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Abstract
Black rat (Rattus rattus), brown rat (Rattus norvegicus), and house mouse (Mus musculus) are known to be among the most 
common anthropophilic rodent species in cities worldwide. These species are responsible for the destruction of domestic 
and industrial materials, considerable damage to food stocks as well as zoonotic pathogens circulation and transmission 
to humans and animals. These invasive species have disseminated in all continents following human-mediated exchanges, 
especially maritime transports. In particular, seaports appear as privileged rats and mice’s entry points into new regions, thus 
making them international regulations’ priorities for rodent surveillance and management. Yet, studies on seaport rodents 
are rare; in particular, investigations on their genetic structure are almost inexistent, thus precluding science-guided interven-
tions. In order to fill such a gap, our study focused on the population genetics of R. rattus, R. norvegicus and M. musculus 
in the Autonomous Port of Cotonou, Benin. Nine different sites were surveyed for three years. In total, 366 R. rattus, 188 
R. norvegicus and 244 M. musculus were genotyped using 18 microsatellites, 16 microsatellites and 17 microsatellites, 
respectively. Our results show very well-structured genetic clusters in all three species as well as limited impacts of rodent 
control campaigns. Using comparisons with genotypes from other European, Asian and African countries, we suggest for 
the first time that settlement of newly introduced individuals may be a rare event. Implications in terms of management units 
and control and monitoring are discussed.
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Introduction

Human activities contribute strongly to the displacement of 
species outside their original distribution area, thus lead-
ing to an increased number of biological invasions (Wilson 
et al. 2009; Blackburn et al. 2011; Gallardo and Aldridge 
2013; Padayachee et  al. 2017; Seebens et  al. 2017). In 
particular, maritime trade plays a major role in the global 
spread of exotic plant and animal species around the world 
(Veale et al. 2021). Among them, the transport and invol-
untary introduction of commensal rodents and their associ-
ated ectoparasites and pathogens are particularly worrying 
(Aplin et al. 2011; Song et al. 2003, 2014; Bona 2020). The 
black rat Rattus rattus, the Norway rat Rattus norvegicus 
and the domestic mouse Mus musculus fall within the 100 
most impactful invasive alien species (Lowe et al. 2000; 
www. iucnr edlist. org), ranking within the top 15 rodent pest 
taxa in the world (Capizzi et al. 2014). These species have 
invaded all the continents except Antarctica (Long 2003). 
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The intensification of trade has accelerated their spread to 
new territories with invasion modalities that remain largely 
uncontrolled (e.g., Dalecky et al. 2015; Berthier et al. 2016). 
Consequently, they have now reached a quasi-global distri-
bution (St Clair 2011). All three species impact local biodi-
versity, leading to the decrease or extinction of endemic spe-
cies (Wyatt et al. 2009; Harper and Bunbury 2015; Doherty 
et al. 2016). They cause damage to infrastructure and human 
activities (Garba et al. 2014b; Panti-May et al. 2017) and 
huge economic losses, essentially related to the destruction 
of food stocks (Dossou et al. 2020; Diagne et al. 2020a, b, 
2021). They are also involved in the transport, maintenance,  
and transmission of many zoonotic agents (review in Meerburg  
et al. 2009; Colombe et al. 2019). Their tigh interaction 
with humans has made them privileged sources of infec-
tious diseases, thus inducing the loss of hundreds thousands  
of lives annually (Colombe et al. 2019). In order to avoid 
rodent-mediated dissemination of zoonotic agents showing 
epidemic/pandemic potential, International Health Regula-
tion (World Health Organization 2008) imposes signatory 
states to monitor and control invasive rodents at their entry 
points, especially within seaport areas. However, scientific 
data to guide rodent management actions in such habitats 
are very scarce.

Thanks to its international seaport in the city of Coto-
nou (officially “Autonomous Port of Cotonou”, hereafter 
designed as to APC), the Republic of Benin is at the heart 
of intercontinental trade between West African coastal as 
well as hinterland countries and the rest of the world. As a 
consequence, the APC constitutes a particularly favourable 
site for exotic rodents introduction and subsequent spread 
towards landlocked countries such as Niger, Burkina-Faso, 
Mali and Chad. For instance, trade flows from Benin to 
Niger are thought to have facilitated the introduction of 
the black rat and the house mouse in large cities such as 
Niamey, which is more than 1,000 km away from the coast 
(Berthier et al. 2016; Hima et al. 2019). This latter species 
was probably brought in by ships, settled in the seaport and 
then transported to Niamey with the goods loaded on the 
trucks (Hima et al. 2019).

Rattus rattus, Rattus norvegicus and Mus musculus are 
abundant within the APC, representing more than 80% of 
the small mammals caught (Hima et al. 2019; Dossou et al. 
2020; Badou et al. submitted). In the industrial storehouses, 
Norway rats and house mice damage an average of 3,450 
tons of imported rice, for an estimated loss of 58 k€ per 
warehouse and per year (Dossou et al. 2020). They may also 
be responsible for the destruction of the electricity networks, 
including those of some very expensive unloading machines 
(APC, pers. comm.). Additionally, they may be involved 
in the introduction of allochthonous zoonotic pathogens, 
such as Seoul Orthohantavirus that are responsible for 
hemorrhagic fevers (Castel et al. 2021). However, whether 

introduction events are frequent or not remains unknown, 
thus greatly limiting our ability to evaluate future risks.

In order to deal with these sanitary, food security, and 
economic issues, APC authorities periodically hire ser-
vice providers which organize anticoagulant-based rodent 
control campaigns within the seaport. However, a three-
year long survey of invasive rodent abundance in the APC 
suggests that deratization is rather ineffective in the short-
term, with similar population levels being observed within 
six months (Badou et al. submitted). Yet, the processes at 
work after rodent control operations that enable population 
recovery (i.e., endogenous reproduction vs. immigration) 
remain unknown, thus obscuring the best options for cop-
ing with rodent control through efficient, sustainable, and 
cost-effective methods.

By allowing indirect estimation of rodent origin and dis-
persal at the spatial and temporal scales that are relevant 
for surveillance and control, population genetics may help 
to address these issues. In this study, we describe the pop-
ulation genetic structures of R. rattus, R. norvegicus and 
M. musculus within the APC using species-specific sets of 
microsatellite markers, and we evaluate gene flows at a very 
fine spatial scale. Using longitudinal sampling, we investi-
gate the effect of rodent control campaigns on the population 
genetic estimates from the three pest species. Finally, we 
rely on samples from foreign countries to mimic putative 
introduction events and examine whether our microsatellite 
panels allow us to identify newly disembarked individuals.

Material and methods

Study area and sample collection

Between 2017 and 2020, rodents were sampled each 
semester at 9 different sites of the Cotonou seaport using 
a standardized protocol (Garba et al. 2014a; Badou et al. 
submitted). Two sites were located within the artisanal fish-
ing port outside the industrial seaport: APC1 (fresh fish 
stores) and APC2 (fresh fish market). Within the industrial 
seaport, trapping was carried out in restaurants and can-
teens for local workers (APC3), in the Beninese Society 
of Port Manutention (SOBEMAP) warehouses number 1 
(APC4), 2 (APC5), 3 (APC6) and 4 (APC7), in the garage 
and mechanical workshops of SOBEMAP (APC8) as well 
as in the parking lot of SOBEMAP heavy (including off-
duty) gears (APC9) (Fig. 1). Details on each trapping sites 
are provided in Supplementary material 1.

At each session and in each site, locally-made wire mesh 
traps (LxWxH 30 × 10x10cm) and manufactured Sherman 
traps (Sherman Inc, USA; 23.2 × 7.3x8.8 cm) were system-
atically used in conjunction so as to maximize the chances of 
capturing both small and large species (Garba et al. 2014a; 
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Dalecky et al. 2015; Lucaccioni et al. 2016; Badou et al. 
submitted). A mixture of peanut butter and sardines in oil 
was used as bait. The traps were set for 3–4 consecutive 
nights and were collected each morning. Rodents captured 
were brought to the laboratory and treated within the same 
day. The exact GPS coordinates of each capture were sys-
tematically recorded. In total, six sampling sessions were 
conducted: session 1: September–October 2017; session 2: 
March–April 2018; session 3: September–October 2018; 
session 4: March–April 2019; session 5: September–October 
2019; session 6: March–April 2020. Importantly, two antico-
agulant-based rodent control campaigns were conducted in 
APC4 to 8 before our trapping sessions 3 and 4, respectively.

Ethical aspect and data sharing

This program was conducted within the framework of the 
research agreement between the Republic of Benin and 

the French National Institute for Sustainable Develop-
ment (IRD) that was reapproved on the 6th April 2017, as 
well as the partnership agreement between IRD and the 
University of Abomey-Calavi (signed on the 30th Sep-
tember 2010 and renewed on the 3rd July 2019). All trap-
ping sessions were authorized by the APC administrative 
authorities and no trap was set without the explicit oral 
consent of port staff or artisanal seaport site owners/
operators.

Rodents were captured and brought alive to the lab where 
they were treated in a respectful manner in accordance with 
the guidelines of the American Society of Mammalogists 
(Sikes and Gannon 2011), sedated, and then sacrificed by 
cervical dislocation as recommended by Mills et al. (1995). 
Access to and benefit-sharing of genetic resources produced 
during the course of the present study was authorized by 
the Benin national authorities following the Nagoya interna-
tional protocol (permit 608/DGEFC/DCPRN/PF-APA/SA). 
Samples and associated data were deposited in the Small 

Fig. 1  Trapping sites in the Autonomous Port of Cotonou (APC) on Google Earth©. Deratised and non-deratised sites are indicated in green and 
yellow, respectively
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Mammal Collection at the IRD/CBGP (https:// doi. org/ 10. 
15454/ WWNUPO) as well as at URIB/LARBA/EPAC.

Laboratory analyses

Genomic DNA was extracted from ethanol-preserved tis-
sues (kidney, spleen or liver for animals captured alive, and 
hind toes for individuals that were found dead inside the 
traps) with the Qiagen DNeasy Blood and Tissues kit as rec-
ommended by the supplier. The amplification was carried 
out in multiplex with three species-specific microsatellite 
panels. For R. rattus, we used a panel of eighteen microsat-
ellite loci of which eight (D10Rat20, D11Mgh5, D11Rat56, 
D16Rat81, D2Mgh14, D5Rat83, D7Rat13 and D18Rat75) 
were originally developed for R. norvegicus (Jacob et al. 
1995) while ten (Rr14, Rr17, Rr21, Rr22, Rr54, Rr67, Rr68, 
Rr93, Rr107 and Rr114) were R. rattus-specific (Loiseau 
et al. 2008). For R. norvegicus, we used a panel of six-
teen microsatellite loci (D1VKORC1-C, D1VKORC1-A, 
D3Rat159, D4Rat59, D5Rat43, D8Rat162, D10Rat105, 
D11Rat11, D12Rat49, D13Rat21, D14Rat110, D15Rat64, 
D18Rat116, D19Rat62, D20Mit4, D2Rat97) (Desvars-
Larrive et al. 2017). For M. musculus, we used a panel 
of seventeen microsatellite loci (D1Mit291, D2Mit456, 
D3Mit246, D4Mit17, D4Mit241, D6Mit373, D7Mit176, 
D8Mit13, D9Mit51, D10Mit186, D11Mit236, D14Mit66, 
D16Mit8, D17Mit101, D18Mit8, D19Mit30 and D5Mit30) 
(available from the MMDBJ database: http:// www. shigen. 
nig. ac. jp/ mouse/ mmdbj/ top. jsp; Lippens et al. 2017). Poly-
merase Chain Reactions (PCR) and genotyping were con-
ducted according to previously described procedures for R. 
rattus (Berthier et al. 2016), M. musculus (Lippens et al. 
2017) and R. norvegicus (Desvars-Larrive et al. 2017). 
Genotyping was performed with an ABI 3500xl sequencer 
(Applied Biosystems) with 2 μl of diluted PCR product to 
which a 15 μl mix of formamide and the GS 500 LIZ size 
marker (ABI 3100 model) were added. Microsatellite pro-
files were read independently by two persons using Gen-
eMapper v.4.0. In the case of ambiguous reading at a given 
microsatellite, the individual was genotyped de novo and 
re-read for that particular locus.

Spatial patterns of population genetic structure

Analyses were performed for each species separately. They 
were done first on sessions pooled for each site. Unless spec-
ified, only samples from sites with at least 11 individuals for 
a given species were used. Deviation from Hardy–Weinberg 
equilibrium (HWE) for each site and each locus as well as 
linkage disequilibrium (LD) between each pair of loci at 
each site were tested using GENEPOP v.4.6 (Rousset 2008). 
Corrections for multiple tests were performed using the false 

discovery rate (FDR) approach (Benjamini and Hochberg 
1995) implemented in the Bioconductor qvalue R package 
(Storey 2002).

FreeNa (Chapuis and Estoup 2007) was used to esti-
mate the presence of null alleles in each dataset in order 
to test whether they may explain heterozygote deficiencies 
(see below).

The allelic richness (ar) was calculated at each site using 
the rarefaction procedure in FSTAT v2.9.4 (Goudet 2003). 
The observed (HO) and expected (HE) heterozygosities were 
estimated using GeneClass2 (Piry et al. 2004) and the FIS 
(Weir and Cockerham 1984) using Genepop.

Genetic differentiation between sites was estimated by 
pairwise FST estimates (Weir and Cockerham 1984) using 
FSTAT. A 95% confidence interval (CI) for mean FST was 
generated by bootstrap resampling (10,000 permutations) 
across loci.

Under a model of isolation by distance (IBD), genetic dis-
tance between individuals is expected to increase with geo-
graphical distance (Rousset 1997). IBD was estimated using 
the regression method based on the expected linear rela-
tionship between genetic and geographic distances (Rousset 
1997, 2000) in GENEPOP. Mantel tests (10,000 permuta-
tions) were performed using the pairwise genetic differentia-
tion estimator ê (Watts et al. 2007) calculated between all 
pairs of individuals genotyped and the logarithm of their 
Euclidean geographical distances. The minimum distance 
between sites (d = 100 m) was used as a threshold to exclude 
pairs of individuals from the same site.

Population genetic structure was then explored using the 
clustering approach implemented in STRU CTU RE V.2.3.4 
(Pritchard et al. 2000) using all individuals genotyped in 
order to determine the number of homogeneous genetic 
clusters (K) present in each species-specific dataset. The 
analyses were performed with a model including admixture 
and correlated allele frequencies, for K ranging from 1 to 
10. Each run included a burn-in phase of 200,000 iterations 
followed by 600,000 iterations. We performed 10 independ-
ent analyses for each K value. The number of genetic groups 
was inferred by the delta-K method applied to the log prob-
abilities of data (Evanno et al. 2005). For R. rattus, fifteen 
individuals from four districts (Agla, N = 4; Ladji, N = 4, 
Saint Jean, N = 5 and Zongo, N = 2) of the city of Cotonou 
were also included in our analyses (Dossou et al. 2022).

Population genetic structure was also investigated through 
Discriminant Principal Component Analysis (DAPC) which 
can handle the absence of HW equilibrium (Jombart et al. 
2010). Analyses were conducted using all individuals under 
the R software using the adegenet and devtools packages, for 
K = 1 to 10. The most likely number of genetic groups (K) 
was determined using the Bayesian Information Criterion 
(BIC; Lebarbier and Mary-Huard 2006), and the a priori cri-
terion of a delta-BIC less than six (Kass and Raftery 1995).

https://doi.org/10.15454/WWNUPO
https://doi.org/10.15454/WWNUPO
http://www.shigen.nig.ac.jp/mouse/mmdbj/top.jsp
http://www.shigen.nig.ac.jp/mouse/mmdbj/top.jsp


Urban Ecosystems 

1 3

Changes in population genetic structure 
through time

Genotype data for each species were then separated into 
three temporal datasets, regrouping sessions “before” (ses-
sions 1 and 2), “during” (sessions 3 and 4) and “after” rodent 
control campaigns (sessions 5 and 6), respectively. Using 
STRU CTU RE, we investigated whether genetic clustering in 
“before” and “after” datasets was similar to that observed in 
the whole dataset for each species. We then used NeEstima-
tor v2 (Do et al. 2014) to estimate effective population size 
(NE) for each site or group of sites corresponding to a genetic 
cluster in the industrial seaport before, during (when suffi-
cient sampling) and after control campaigns. These analyses 
were conducted in both deratised and non-deratised sites, 
using the linkage disequilibrium (LD) method with a thresh-
old minimum allele frequency of 0.02 (i.e. Pcrit parameter) 
(Waples and Do 2008). Sites or groups of sites with less than 
10 genotyped individuals were excluded from the analyses. 
Signals for bottleneck effects were looked for using the Step-
wise Mutation Model (SMM) on BOTTLENECK V1.2 (Piry 
et al. 1999) in each species-specific dataset.

Detection of potentially newly introduced 
individuals

For each species, individuals from three other countries (one 
individual/country) were genotyped and added to the APC 
dataset. For Rattus rattus, additional individuals were from 
Dakar (Senegal), Franceville (Gabon) and Niamey (Niger). 
The fifteen individuals from Cotonou core city were also 
included in the analyses. For Rattus norvegicus, the addi-
tional individuals were from Lyon (France), Bamako (Mali) 
and Ratchaburi (Thailand). For Mus musculus, extra individ-
uals were from Dakar (Senegal), Lyon (France) and Niamey 
(Niger). Factorial correspondence analyses were performed 
using Genetix v 4.05 (Belkhir et al. 1996–2004) in order to 
evaluate if the additional individuals could be clearly identi-
fied as different from those trapped within the APC.

Results

Rodent trapping success

Across the six sampling sessions, a total of 803 rodents (367 
Rattus rattus, 189 Rattus norvegicus and 247 Mus musculus) 
were captured in the nine APC sites out of a total of 6,569 
trap nights (Table 1 and Fig. 1). Rattus rattus was mostly 
trapped in the artisanal seaport (sites APC1 and APC2) 
and, to a lesser extent, in the industrial seaport (especially 
in APC3, then in APC8 and APC9, and more marginally in 
other sites; Table 1). Rattus norvegicus and M. musculus 

were seldom in the artisanal seaport (APC1 and 2) as well as 
in some sites of the industrial seaport (APC 3 and 9). How-
ever, these two species were largely dominant in SOBEMAP 
warehouses (APC4, APC5, APC6 and APC7) and garage 
(ACP8; Table 1). Trap success was lower in sessions 3 and 
4 (8.43% and 5.78%), which were both concomitant to two 
rodent control campaigns (Table 1). Detailed analyses of 
spatio-temporal variations of species-specific abundances 
as well as of species assemblages are available in Badou 
et al. (submitted).

Population genetic structure

A total of 366 R. rattus, 188 R. norvegicus and 244 M. mus-
culus were successfully genotyped. Considering only sites 
with at least 11 individuals for a given species, our data-
sets included 353 individuals from six sites (APC1, APC2, 
APC3, APC6, APC8 and APC9) in R. rattus, 179 individuals 
from five sites (APC4, APC5, APC6, APC7 and APC8) in 
R. norvegicus and 244 individuals from five sites (APC4, 
APC5, APC6, APC7 and APC8) in M. musculus.

For R. norvegicus, linkage disequilibrium was significant 
for 9 out of the 600 tests performed (1.5%), and 5 of the 
significant values implicated the allele pair D1VKORC1-C 
and D1VKORC1-A, which were thus considered as linked. 
After having removed D1VKORC1-C locus, only 3 out of 
the 525 pairs of loci remained significantly linked (0.57%). 
The remaining loci were thus considered to be geneti-
cally independent, and were kept for subsequent analyses. 
For R. rattus and M. musculus, 21.13% (194 of 918) and 
22.5% (153/680) of the LD tests were found significant 
(q-value < 0.05), respectively. Significant values concerned 
nearly all pairs of loci and all sites in both species. All loci 
were thus kept for subsequent analyses in these two species.

All loci were found at HW equilibrium for R. rattus, 
except D18R75. For R. norvegicus, all loci were found 
at HW equilibrium except D8Rat162. For M. musculus, 
seven loci (D2Mit456, D3Mit456, D4Mit241, D5Mit30, 
D6Mit373, D7Mit176 and D18Mit8) were not at HW equi-
librium, exhibiting FIS values ranging (between -0.09 and 
0.56). Mean null allele frequencies estimated with FreeNA 
for loci that were not at HW equilibrium in the three species 
were sufficiently low not to affect significantly estimates of 
genetic diversity and differentiation (Chapuis and Estoup 
2007; Chapuis et al. 2008), except for D5Mit30 in M. mus-
culus (mean null allele frequency = 0.24; FIS = 0.56), which 
was then excluded from the microsatellite panel.

Genetic analyses were thus conducted using eighteen 
microsatellites for R. rattus, fifteen microsatellites for R. 
norvegicus and sixteen microsatellites for M. musculus.

Genetic diversity estimates varied among sites for the 
three rodent species (Table 2). In R. rattus, mean values were 
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of 4.62 ± 1.6 for allelic richness, of 0.60 ± 0.2 for expected 
heterozygosity and of 0.05 ± 0.02 for FIS. In R. norvegicus, 
mean values of genetic diversity estimates were quite similar 
to those of the former species, being of 4.02 ± 1.1 for allelic 
richness, of 0.58 ± 0.16 for expected heterozygosity, and of 
0.04 ± 0.01 for FIS. In M. musculus, mean values were of 
4.95 ± 1.2 for allelic richness, of 0.64 ± 0.14 for expected 
heterozygosity, and of 0.04 ± 0.02 for FIS.

In all three species, genotypic differentiation was signifi-
cant between sampled sites (P < 0.0002). In R. rattus, mean 
FST value was of 0.06 (95% CI = [0.098; 0.133]). Pairwise 
FST estimates ranged from 0.02 (between APC8 and APC9 in 
the industrial seaport) to 0.16 (between APC1 and APC2 in 
the artisanal seaport) (Table 3A). Considering only the indus-
trial seaport (which is the area where both other rodent species 
were found), mean FST value was of 0.02 (95% CI = [0.018; 
0.04]). In R. norvegicus, mean FST value was of 0.06 (95% 
CI = [0.055; 0.074]). Pairwise F ST estimates ranged from 
0.02 (between APC6 and APC7) to 0.11 (between APC4 and 
APC7; between APC4 and APC8) (Table 3B). In M. muscu-
lus, mean FST value was of 0.09 (95% CI = [0.075; 0.1]). 
Pairwise F ST estimates ranged from 0.04 (APC6 and APC7) 
to 0.13 (APC5 and APC8) (Table 3C).

Spatial patterns

Mantel tests performed between individuals revealed sig-
nificant IBD in R. rattus (slope = 0.039, intercept = -0.250, 
P < 0.0001); IBD remained significant when considering 
only individuals from the industrial seaport (slope = 0.011, 

intercept = -0.06, P < 0.0001). Significant IBD were also 
detected in R. norvegicus (slope = 0.027, intercept = -0.159, 
P < 0.0001) and in M. musculus (slope = 0.033, inter-
cept = -0.192, P < 0.0001).

In R. rattus, STRU CTU RE clearly identified three genetic 
groups (Fig. 2A): the highest delta-K value was for K = 3 
(delta-K = 1,405.69), and was considerably higher than for 
K = 4 (delta-K = 16.96). In the DAPC analysis, two genetic 
groups were identified: the highest delta-BIC value was  
33.21 for K = 2. However, the genetic groups observed at 
K = 3 were very similar to those obtained with STRU CTU RE,  
with APC1 and APC2 being distinct genetic groups,  
while a third group included the individuals from the indus-
trial seaport (APC3-9). When STRU CTU RE is performed 
with the individuals from the core city of Cotonou, they also 
identified three genetic groups, with individuals from the 
city clustering with those from the industrial seaport.

In R. norvegicus, STRU CTU RE clearly identified two 
genetic groups (Fig. 2B): the highest delta-K was for K = 2 
(delta-K = 681.08), and was considerably higher than for 
K = 3 (delta-K = 31.29). The DAPC highest delta-BIC value 
(9.06) was obtained for K = 2, and patterns were very similar 
to those obtained with STRU CTU RE: a first cluster gathered 
the individuals from the APC3, APC6, APC7 and APC8 
sites, while the individuals from APC4 were assigned to a 
second cluster. The individuals from APC5 had a variable 
mixed inferred ancestry.

In M. musculus, STRU CTU RE clearly identified three 
genetic groups (Fig. 2C): the highest delta-K value was 
for K = 3 (delta-K = 236.93), and was considerably higher 
than for K = 4 (delta-K = 168.85). In the DAPC analysis, 

Table 2  Polymorphism 
descriptors at 18 microsatellites 
loci for Rattus rattus, 
15 microsatellites for 
Rattus norvegicus and 16 
microsatellites for Mus 
musculus. The number of 
individuals analysed per 
population (N), Loiselle 
coefficient (ρ), the allelic 
richness (ar), expected 
heterozygosities (HE) and the 
inbreeding coefficient (Fis) were 
reported

Sites APC1 APC2 APC3 APC4 APC5 APC6 APC7 APC8 APC9 Mean

Rattus rattus
N 135 72 64 5 4 11 4 38 34 367
ρ 0.07 0.14 0.06 - - 0.007 - 0.06 0.06 -
ar 3.78 4.2 4.95 - - 5.33 - 4.86 4.56 4.62
He 0.50 0.58 0.64 - - 0.64 - 0.64 0.60 0.60
FIS 0.07 0.07 0.03 - - 0.04 - 0.01 0.08 0.05
Rattus norvegicus
N 1 0 9 38 43 55 28 15 0 189
ρ - - - 0.09 0.02 0.02 0.04 0.03 - -
ar - - - 3.92 4.26 3.98 4.15 3.8 - 4.02
He - - - 0.57 0.61 0.56 0.59 0.58 - 0.58
FIS - - - 0.07 0.03 0.06 -0.06 0.09 - 0.04
Mus musculus
N 0 0 1 19 53 77 60 35 2 247
ρ - - - 0.06 0.08 0.03 0.03 0.1 - -
ar - - - 4.25 4.72 5.50 5.43 4.85 - 4.95
He - - - 0.60 0.59 0.68 0.70 0.62 - 0.64
FIS - - - 0.01 -0.002 0.06 0.05 0.09 - 0.04
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the highest delta-BIC value (12.01) was obtained for K = 2, 
while the delta-BIC value for K = 3 was 8.68. However, 
patterns for K = 3 were very similar to those obtained with 
STRU CTU RE, thus pointing towards three genetic clusters: 
individuals from APC4 and APC5 were mainly assigned to a 
first genetic pool; individuals from APC6 and APC7 formed 
a second group; and individuals from APC8 constituted a 
third group on their own.

Changes through time

Effective population sizes (NE) were estimated for sites or 
groups of sites before, during and after rodent control cam-
paigns in the industrial seaport for all three species, as well 
as for sites of the artisanal seaport at the same period of time 
for R. rattus.

In R. rattus, NE increased strongly from 11.3 (sessions 
1 and 2, before control) to 34.2 (session 5 and 6, after con-
trol) in the group formed by APC4-8 sites where deratization 
occurred. Only two individuals were captured in these sites 

during sessions 3 and 4 which fell during control operations. 
NE values increased slightly in the same period for sites that 
were non-deratized (APC1: from 11.6 to 19.5, and ACP2: 
from 5.8 to 12.7).

Effective population size also rapidly increased after 
deratting campaigns in some genetic clusters for both R. 
norvegicus and M. musculus. Indeed, in the R. norvegicus 
genetic cluster from APC4-5 sites, NE increased from 19.5 
(sessions 1 and 2) to 35.1 (sessions 5 and 6). In the same 
manner, in the M. musculus genetic cluster from APC6-7, 
effective population size increased from 21.2 (sessions 1 
and 2) to 35.6 (sessions 5 and 6). In contrast, NE remained 
globally stable in APC6-8 (43.5 to 43) in R. norvegicus 
and in APC4-5 (8.8 to 7.4) in M. musculus. However, in 
APC8 NE has decreased from 24.7 to 8.6.

Significant signals for bottleneck effects were detected 
in nearly all sites for R. rattus (p < 0.01), except in APC2 
(p = 0.06). In R. norvegicus a significant signal was found 
in only one site (APC6: p = 0.02). In M. musculus, sig-
nificant signals were found in APC5 (p = 0.03), APC6 

Table 3  Pairwise FST values among sampled sites calculated for all loci in each species, using 18 microsatellites for Rattus rattus (A), 15 micros-
atellites for Rattus norvegicus (B), and 16 microsatellites for Mus musculus (C)

A) Sites APC1 APC2 APC3 APC4 APC5 APC6 APC7 APC8

APC2 0.16
APC3 0.13 0.13
APC4 - - -
APC5 - - - -
APC6 0.09 0.09 0.02 - -
APC7 - - - - - -
APC8 0.13 0.12 0.03 - - 0.01 -
APC9 0.13 0.12 0.04 - - 0.02 - 0.02

B) Sites APC1 APC2 APC3 APC4 APC5 APC6 APC7 APC8

APC2 -
APC3 - -
APC4 - - -
APC5 - - - 0.06
APC6 - - - 0.10 0.04
APC7 - - - 0.11 0.05 0.02
APC8 - - - 0.11 0.06 0.05 0.05
APC9 - - - - - - - -

C) Sites APC1 APC2 APC3 APC4 APC5 APC6 APC7 APC8

APC2 -
APC3 - -
APC4 - - -
APC5 - - - 0.09
APC6 - - - 0.09 0.09
APC7 - - - 0.08 0.10 0.04
APC8 - - - 0.11 0.13 0.10 0.08
APC9 - - - - - - - -
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(p = 0.007) and APC8 (p = 0.02), but not in other sites 
(APC4 and APC7).

Detecting potential new migrants

In Rattus rattus, individuals sampled in APC were grouped 
with those sampled in the cities of Cotonou and Niamey, 
while this cluster was clearly distinct from both Franceville 
(Gabon) and Dakar (Senegal) individuals (Fig. 3a). In R. nor-
vegicus, individuals sampled in APC formed a well-defined 
group from which the three individuals from Mali, France, 
and Thailand were very distinctly separated (Fig. 3b). In the 
same manner, M. musculus individuals from APC formed 
a group that was also clearly differentiated from mice from 
France, Dakar and Niamey, although the two individuals from 
Niamey did not group together (Fig. 3c).

Discussion

Human movements and migrations have played a leading 
role in the global spread of domestic rodents (Roberts 1991; 
Kovács 2012; Puckett et al. 2020). In particular, commercial 
exchanges (imports and/or exports) through maritime trade 
largely contribute to the long-distance transport and intro-
duction of invasive rodent species in seaports around the 
world (Veale et al. 2021), from which they colonise entire 
continents. Among these species, R. rattus, R. norvegicus 
and M. musculus are currently spreading in Africa (Konečný 
et al. 2013; Dalecky et al. 2015; Berthier et al. 2016; Hima 
et al. 2019). Here, we investigated and compared for the first 

time the population genetic structures of these three species 
that coexist in an international seaport.

Rodent sampling in 9 different sites of the port first indi-
cated spatial segregation of the species: R. rattus was found 
in much higher numbers in the artisanal seaport, where the 
two other species did not occur, or occur only on very rare 
occasions. Rattus norvegicus and M. musculus co-occurred 
in the industrial seaport and dominated largely the trapping 
results in the warehouses located along the unloading docks 
(APC4-7). The spatial segregation observed between these 
three species in APC could be due to habitat preferences, 
interspecific competition and/or historical factors that are 
beyond the scope of the present paper, but discussed in 
Badou et al. (submitted).

Population genetic studies using microsatellite markers of 
commensal rodents in urban contexts were often conducted 
at larger spatial scales than that considered in our study. For 
instance, the rare studies conducted on R. rattus all focused 
on West African cities with sampling covering several differ-
ent districts (Niamey, Niger: Berthier et al. 2016; Franceville, 
Gabon: Mangombi et al. 2016; Cotonou, Benin: Badou et al. 
2021). Urban R. norvegicus genetics was investigated in a 
few cities in North and South America (i.e., Baltimore, USA: 
Gardner-Santana et al. 2009; Salvador, Brazil: Kajdacsi et al. 
2013; New York City, USA: Combs et al. 2018a; Salvador, 
Brazil; New Orleans, USA; Vancouver, Canada; and New 
York City, USA: Combs et al. 2018b). The only study on 
urban M. musculus we are aware of was conducted in Dakar, 
Senegal (Stragier et al. 2022), and again was conducted at the 
scale of the city. To our knowledge, the only genetic study 
available on rodent populations from a seaport area and its 
surroundings was conducted in Paranagua, Brazil on 71 R. 

Fig. 2  Spatial genetic structure in the Autonomous Port of Cotonou 
using STRU CTU RE. A  Results for R. rattus for K = 3; B  R. nor-
vegicus for K = 2; C  M. musculus for K = 3. Each vertical line rep-
resents an individual and barplots indicate individual ancestry esti-
mates. D Report on the APC map of species-specific genetic clusters 

retrieved by STRU CTU RE analyses. Rounds, triangles, and squares 
represent R. rattus, R. norvegicus, and M. musculus, respectively. 
Colors on the STRU CTU RE diagram (A, B and C) and on the map 
(D) are identical and correspond to the different genetic clusters 
obtained in each species
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norvegicus using 11 microsatellite loci (Gatto-Almeida et al. 
2022). Differences in spatial scales and genetic markers used 
in all these studies make meaningful comparisons difficult. 
However, it is noteworthy that genetic diversity estimates 
observed for all three species within the APC were of the 
same order of magnitude as those obtained in other studies. 
This suggests similar introduction histories throughout the 
world (Gardner-Santana et al. 2009; Desvars-Larrive et al. 
2019; Gatto-Almeida et al. 2022).

Our results suggest that new introductions of rodents are 
rare in the APC. Indeed, no outlier individual was detected 
by the FCA analysis in rodents sampled within the APC dur-
ing our 3 year-long monitoring study. Also, allele numbers 
and allelic richness in R. rattus from Cotonou (ar = 4.41; 
Badou et al. 2021) and in the APC (ar = 4.62; this study) 
are quite similar, whereas one would expect these estimates 
to be higher in the seaport if individuals had been regularly 
(and, especially, recently) disembarked off moored ships 
and then persisted within the local black rat population. 
We were surprised by such patterns since the absence of 
signal reflecting new introduction events suggest that rats 
and mice do not descend frequently from the boats. Yet, 
considering the quasi-global distribution of these three spe-
cies in the world, it is unlikely that this does not occur on 

a rather frequent basis. Moreover, we observed that anti-rat 
discs along mooring cables, though mandatory by IHR, were 
poorly and/or badly used by ships docking at APC: out of 
13 vessels and 119 cables inspected, only 79 discs (69%) 
were indeed installed, many of which being badly installed; 
in total, no ship was perfectly protected with all the cables 
with well-laid discs (personal observations). Finally, the 
recent detection of Seoul virus in R. norvegicus captured 
in the APC in 2018 (Castel et al. 2021) suggested that the 
introduction of some migrant rats sometimes occurs. Those 
individuals could however have just transmitted their patho-
gens before dying, being unable to establish themselves and 
reproduce with resident rodents. Indeed, the non-detection 
of new introductions in genetic data may be explained by 
the presence of small mammal communities already on-
site, which could render the settlement of newly immigrat-
ing individuals or species difficult. This hypothesis is sup-
ported by eco-ethological studies on commensal rodents, 
showing that introduced individuals may be rapidly identi-
fied as intruders by the residents, and subsequently rejected 
(e.g., in R. rattus: Ewer 1971; Granjon and Cheylan 1989; 
Barnett 1958; in R. norvegicus and M. musculus Berdoy and  
Drickamer 2007). If this is indeed the case, it is impor-
tant to note that deratisation campaigns leading to the 

Fig. 3  FCA analyses conducted on microsatellite data for a R. rattus 
from the APC and the cities of Cotonou, Franceville (Gabon), Dakar 
(Senegal) and Niamey (Niger); b  R. norvegicus from APC and the 

city of Cotonou, Lyon (France), Mali, and Thailand; and c M. mus-
culus from APC, Dakar, Lyon and Niamey. Only the three first FCA 
axes are provided here
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temporarily extirpation of the local rodent populations 
may open the gate to the successful settlement of newly 
introduced rodents (and associated pathogens). Although 
data are lacking to conclude definitely, it may be an addi-
tional argument in favour of a rigorous prevention strat-
egy against rodent introduction through ships, rather than 
rodent control only.

Within APC, population genetic analyses showed very 
marked spatial patterns for the three species. This of course 
has important consequences in terms of rodent control since 
the genetic clusters observed should serve as a basis to guide 
deratization campaigns through the adequate definition of 
eradication units (Richardson et al. 2019). In R. norvegi-
cus and M. musculus, two and three genetic clusters were 
observed within the industrial seaport, respectively. In R. 
rattus, two different groups were observed within the arti-
sanal seaport, but only one within the industrial seaport. 
This pattern for the last species strongly contrasts with that 
observed using the same microsatellite markers at the whole 
Cotonou city scale, where only two genetic clusters associ-
ated with lower mean FST (0.107) were detected in black rats 
(Badou et al. 2021).

Genetic structure may reflect genetic isolation by dis-
tance, which is significant in all species. Indeed, invasive 
pests that occupy a broad range of urban conditions (primar-
ily constrained by access to water, food/rubbish and nesting/
burrowing sites) might be expected to exhibit spatial genetic 
patterns driven only by isolation by distance, thus reflecting 
spatial limitation of dispersal (Combs et al. 2018b). As such, 
the gradual pattern of differentiation observed between both 
sides of the industrial seaport in R. norvegicus (Fig. 2B) 
could suggest IBD at the scale of the port. IBD may also 
result from social behaviour of rodent species. Indeed, R. 
norvegicus (Combs et al. 2018a, b; Gardner-Santana et al. 
2009) and M. musculus (Lippens et al. 2017) are known 
for strong social structure and very limited active dispersal. 
In M. musculus in particular, home ranges of a few tens 
of metres in commensal habitats (Pocock et al. 2005), and 
effective dispersal of only few hundred meters (Lippens et al. 
2017) may explain the high FST values observed in this spe-
cies (within the industrial seaport: mean FST = 0.09 for M. 
musculus; 0.06 for R. norvegicus; 0.02 for R. rattus). High 
genetic structure levels such as those observed within the 
APC in R. rattus (FST > 0.16) and M. musculus (FST > 0.13) 
between genetic groups, may also be explained by other fac-
tors. Indeed, they may reflect the presence of physical bar-
riers to individual dispersal. Such barriers within the urban 
landscape have already been evidenced for Norway rats, such 
as major waterways in Baltimore (Gardner-Santana et al. 
2009), Salvador (Kajdacsi et al. 2013) and New Orleans 
(Combs et al. 2018b), roadways in Salvador and Vancouver, 
or resource deserts in New York City (Combs et al. 2018b). 
Within the APC, however, we could not identify obvious 

physical barriers that could explain the observed marked 
genetic partitions. Finally, genetic structure may result from 
variations in effective population size, i.e. demographic bar-
rier (Piry et al. 2004; Berthier et al. 2016; Richardson et al. 
2017; Stragier et al. 2019). Such a demographic process may 
be especially relevant for commensal rodents whose natural 
dispersal distances (i.e. not human-mediated) are generally 
short ranged (< 1 km) and mainly prompted by the lack of 
feeding and harborage sites (Byers et al. 2019; Pocock et al. 
2005). Control measures could also be another factor gener-
ating important gaps in densities and thus genetic disconti-
nuities, such as for instance between the deratised industrial 
port (which may have been recolonized from the city) and 
the non-deratised artisanal port in R. rattus.

Some genetic signatures may suggest an effect of con-
trol measures on population structures. For instance, high 
LD values and significant tests for bottleneck signals were 
observed in both R. rattus and M. musculus. Increased 
linkage disequilibrium can indeed reflect bottleneck events 
(Slatkin 2008). However, similar results (i.e., LD disequilib-
rium and significant tests for bottleneck) were also observed 
for R. rattus in the non-deratized APC1 site, thus suggesting 
that other processes are at work. Also, high LD values may 
reflect the recent mixing of individuals from several sub-
populations that have different allele frequencies (Slatkin 
2008), which may also result from rodent control events. 
Rodent reinfestation after control operations may occur 
either by reproduction of non-poisoned or poison-resistant 
individuals, or by immigration of new individuals from 
neighbouring sites (Richardson et al. 2019).

Whatever the invasive rodent species considered here, 
our FCA analyses demonstrated that microsatellite markers 
makes it possible to detect recently introduced, hence expect-
edly genetically distant individuals. Indeed, for all three spe-
cies, all individuals collected within the Autonomous Port 
of Cotonou over the three years of our study appeared much 
more similar to each other than to “allochthonous” ones. 
The only exception was APC and some Niamey black rat, 
which cluster together; but this supports the hypothesis that 
Niamey black rat originated from Benin seaport (Hima et al. 
2019). These results thus highlight the interest of our panel 
of microsatellite loci as a valuable tool to trace back the geo-
graphic origin of house mice potentially introduced at APC. 
This should be useful to help seaport authorities to survey 
new rodent introductions in their facilities, thus allowing 
them to operationalize the IHR in terms of surveillance of 
maritime trade-associated rodent reservoirs introduction at 
entry points (World Health Organization, 2006). In the par-
ticular case of APC, this seems particularly realistic because 
of the recent implementation of a lab following an academic 
/ seaport partnership initiative, and essentially dedicated 
to invasive terrestrial and marine species monitoring and 
management within Cotonou seaport (“Portuary Platform 
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for Environmental Surveillance”; see https:// view. genial. ly/ 
6059b b3f64 e78f0 d9cb3 2a7f).

With the high increasing rate of invasions (Pimentel 
et al. 2005; Seebens et al. 2017), there is a serious need 
for the development of methods for invasive species control  
(Brockerhoff et al. 2010; Glen et al. 2013; Thresher et al. 
2014). Our trapping data suggested that populations of all 
three species rapidly recovered in terms of number of individ-
uals (i.e., six and twelve months after control). In R. rattus,  
population genetic analyses integrating fifteen individuals 
from the core city showed that they grouped within the same 
genetic cluster than those from the industrial seaport. This 
pattern confirms the limited effect of the control measures 
deployed in the industrial seaport, at least on black rats 
which, otherwise, should result in higher genetic differen-
tiation of the local populations (Gatto-Almeida et al. 2022). 
This adds to our previous results here above that poisoning 
campaigns alone (and as they stand) are insufficient to reach 
long-term decrease of invasive rodent abundances within the 
seaport area, and that accompanying measures are required. 
The latter could consist of environmental modifications 
towards less rodent-favoring habitats (e.g., rearrangement 
and physical protection of food stocks inside warehouses, 
rat-proofing of buildings, fueling of cracks and holes, setup 
of rat-proof grids along sewer networks, favoring of cats 
within the seaport, etc.). This would also reduce the depend-
ency on toxicons such as anticoagulant rodenticides that may 
be dangerous for non-target species as well as to humans 
(Salas et  al. 2000; Hendges et  al. 2019; Kasiotis et  al. 
2021), and favor resistance evolution among target rodents 
(Hodroge et al. 2011; Buckle 2013). Such more suitable and 
long-term adapted measures have already been suggested in 
other settings (e.g., sewer networks: Channon et al. 2006; 
United States: Witmer and Shiels 2017; Brazilian slum: 
Hacker et al. 2016; Richardson et al. 2019). Unfortunately, 
we are not aware of such environmentally-based rodent 
management strategies in seaport habitats while their imple-
mentation in this type of close areas sounds quite feasible. 
Our study highlights the importance of monitoring of what 
descends from the ships to detect the eventual introduction 
of new invasive species (i.e. R. tanezumi; Bastos et al. 2011; 
Kosoy et al. 2015; Ringani et al. 2022) and the pathogens 
they could host. On the other hand, to monitor those that are 
carried on trucks to avoid propagations beyond the APC or 
even in the hinterland countries.
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