SCHEDULE 4

[Reg.10

CRITERIA FOR SIGNIFICANT DISPOSALS/DISCHARGES

The following criteria are to be used to determine whether a disposal or discharge of solid or liquid waste is to be classified as significant for the purposes of the Regulations

Significant disposal of solid waste

A solid waste disposal of more than 250 cu.m. per week average

A facility that disposes of medical waste

A timber processing facility

A facility classified as a mine under the Mining Act (Cap 146)

A sugar mill

A facility of a type declared by the Director under regulation 10(2) to be a significant solid waste disposer

Significant discharge of liquid waste

A liquid waste discharge of more than 50,000 litres per day average

A facility classified as a mine under the Mining Act (Cap 146)

A sugar mill

A commercial dairy

An oil storage depot or petroleum station

A facility of a type declared by the Director under regulation 10(2) to be a significant liquid waste discharger

SCHEDULE 5

[Reg. 2

NATIONAL AIR QUALITY STANDARDS

PART A - AMBIENT AIR QUALITY STANDARDS

THRESHOLD CONCENTRATION TABLE

Pollutant	Threshold concentration	Permissible excess	
Carbon monoxide	10 milligrams per cubic metre	One 8-hour period in a 12-month period expressed as a running 8-hour mean	
Nitrogen dioxide	200 micrograms per cubic metre	9 hours in a 12-month	

		period expressed as a 1-hour mean
Ozone	150 micrograms per cubic metre	Not to be exceeded at any time
Sulphur dioxide	350 micrograms per cubic metre	9 hours in a 12-month period expressed as a 1-hour mean
OR	570 micrograms per cubic metre	Not to be exceeded at any time
PM10	50 micrograms per cubic metre	One 24-hour period in a 12-month period expressed as a 24-hour mean

Notes

- 1. The ambient air quality standard for a pollutant listed in column 1 of the Table is that the concentration of the pollutant must not exceed its threshold concentration except to the extent and in the circumstances (if any) listed in column 3.
- 2. The threshold concentration in relation to a pollutant is the concentration of the pollutant shown in column 2 of the Table, calculated over the time interval specified in column 3.
- 3. In the Table -
- "1-hour mean" (a) means a mean calculated every hour on the hour for the preceding hour; and
 - (b) in relation to a pollutant at a particular location for a particular hour, means the mean of not more than 10-minute means, collected not less than once every 10 seconds, for the pollutant at that location during that hour;
- "24-hour mean" (a) means a mean calculated every 24 hours at midnight for the preceding 24 hours; and
 - (b) in relation to a pollutant at a particular location for a particular 24-hour period, means -
 - (i) the mean level at which the pollutant is recorded in the air, by continuous sampling of the air at that location, throughout that 24-hour period; or
 - (ii) the mean of the 1-hour means for that pollutant at that location for the preceding 24 hours;

"running 8-hour mean" (a) means a mean calculated every hour on the hour for that hour and the preceding 7 hours to give 1 running 8-hour mean per hour; and

(b) in relation to a pollutant at a particular location for a particular hour, means the mean of the 1-hour means for that pollutant at that location for that hour and the preceding 7 hours.

MONITORING METHODS FOR AMBIENT AIR QUALITY STANDARDS

Contaminant Monitoring method

Carbon monoxide Australian Standard AS 3580.7.1:1992,

Methods for sampling and analysis of ambient air---Determination of carbon monoxide---Direct-reading

instrumental method

Nitrogen dioxide Australian Standard AS 3580.5.1:1993,

Methods for sampling and analysis of ambient air---Determination of oxides of nitrogen---Chemiluminescence method

Ozone Australian Standard AS 3580.6.1:1990,

Methods for sampling and analysis of ambient air---Determination of ozone---Direct-reading instrumental method.

PM10 United States Code of Federal Regulations.

Title 40---Protection of Environment,

Volume 2, Part 50, Appendix J---Reference

method for the determination of particulate matter as PM10 in the

atmosphere;

OR Australian/New Zealand Standard

AS/NZS 3580.9.6:2003,

Methods for sampling and analysis of ambient air---Determination of suspended particulate matter---PM10 high volume sampler with size-selective inlet---

Gravimetric method

Sulphur dioxide Australian Standard AS 3580.4.1:1990,

Methods for sampling and analysis of ambient air---Determination of sulphur dioxide---Direct-reading instrumental

method.

PART B – EMISSIONS STANDARDS

Section 1 - General

- 1. A point source of an air polluting substance should not, in isolation or combination with any other source of that substance, cause a concentration of that substance in the ambient air to exceed the emission standards set out in section 3 below.
- 2. The concentration of a point source of a substance may be calculated by using any of the following methods -
 - (a) the relevant modelling protocol contained in *Industrial Source Complex* (*ISC3*) *Dispersion Models* (United States Environmental Protection Agency, Office of Air Quality Planning and Standards, Emissions, Monitoring, and Analysis Division, USEPA-454/B-95-003a), or other equivalent model approved by the Department of Environment;
 - (b) surface meteorological data from an appropriate source;
 - (c) mixing height data from an appropriate source;
 - (d) emission temperature and volume data;
 - (e) the height of emission;
 - (f) any other relevant data or criteria as specified in the models listed in paragraph (a).

Section 2 - Classification of substances

Substances are classified in Tables 1 and 2 in the following categories according to toxic, persistent and carcinogenic qualities:

- .Category 1 Environmentally Toxic and Persistent or Carcinogenic Substances

 The concentration of solid substances must not exceed 2.5 mg/Nm³ at the
 point of the exhaust. The concentration of a gas, vapour or haze of a
 substance must not exceed the MAC-value specified in Table 2 at the
 point of the exhaust.
- Category 2 Environmentally Toxic and Non-Persistent Substances

 The concentration of solid substances must not exceed 25 mg/Nm³ at the point of the exhaust. The concentration of a gas, vapour or haze of a substance, if exhausted at roof level, must not exceed 10 X the MAC-value specified in Table 2 at the point of the exhaust.
- Category 3 Mildly Toxic but Environmentally Persistent Substances

 The concentration of solid substances in this category must not exceed 75 mg/Nm³ at the point of the exhaust. The concentration a gas, vapour or haze of a substance, if exhausted at roof level, must not exceed 10 X the MAC-value specified in Table 2 at the point of the exhaust.
- Category 4 Non-Toxic and Non-Persistent Substances

 The concentration of solid substances must not exceed 100 mg/Nm³ at the point of the exhaust. The concentration of gas, vapour or haze of a substance, if exhausted at roof level, must not exceed 10 X the MAC-value specified in Table 2 at the point of the exhaust.

Section 3 - Emission Standards (Dioxins and Furans and other Substances)

- 1. The sum concentrations of:
 - (a) 2,3,7,8-Tetrachlorodibenzo-P-Dioxin,
 - (b) 1,2,3,7,8-Pentachlorodibenzo-P-Dioxin,
 - (c) 1,2,3,6,7,8-Hexachlorodibenzo-P-Dioxin,
 - (d) 1,2,3,7,8,9-Hexachlorodibenzo-P-Dioxin,
 - (e) 1,2,3,4,7,8-Hexachlorodibenzo-P-Dioxin,
 - (f) 2,3,7,8-Tetrachlorodibenzofuran,
 - (g) 2,3,4,7,8-Pentachlorodibenzofuran,
 - (h) and 1,2,3,6,7,8-Hexachlorodibenzofuran

should not exceed, at the point of the exhaust, 0.5 nanograms/Nm³ in any emission.

2. The concentration of any Category 1 solid substances listed in Table 1 should not exceed 2.5 mg/Nm³ at the point of the exhaust.

Table 1 - Solid substances

Substance	Category	Air quality guideline mg/m3
Ammonium compounds	3	0.03
Antimony compounds	2	0.01
Arsenic compounds	1	0.001
Asbestos	1	0.001
Bariumsulfate	3	0.03
(Other) Barium compounds	2	0.01
Bitumen	2 3	0.03
Bone-meal	2	0.01
Cadmium	1	0.001
Calcium hydroxide	3	0.03
Calcium oxide	3	0.03
Chromium and Chromium compounds	1	0.001
Copper and Copper compounds	2	0.01
Corn or flour dust	4	0.03
Cyanides (Sodium and Calcium compounds)	1	0.001
DDT and related compounds	1	0.001
Fertiliser (phosphates)	3	0.03
Lead and Lead compounds	1	0.001
Magnesium compounds	3	0.03
Nickel compounds	1	0.001
Soot	2	0.01
Tar	2 2 3	0.01
Tobacco	3	0.03
Wood dust	2	0.01
Zinc and Zinc compounds	2	0.01

Table 2 - Gas, vapour or haze substances

Substance	Category	MAC-value mg/m3	Scent limit mg/m3	Air quality guideline mg/m3
Acetic acid	2	25	0.25	0.25
Acetic anhydride	2	20	-	0.2
Acetone	4	2400	1	70
Acetylene	4	-	-	_
Acrolein	2	0.25	0.05	0.003
Acrylonitrile	1	9	-	0.001
Ammonia	2	18	0.1	0.18
Benzene	1	30	3	0.005
Butane	4	1430	-	40
normal-Butanol	2	150	0.2	1.5
normal-Butyl acetate	2	710	0.03	0.2
Carbon monoxide	4	29	-	1
Carbon disulphide	2	60	0.05	0.05
Chlorine	2	3	0.06	0.03
Chloroform	1	120	30	0.12
Cyclohexane	2	1050	2	10
Cyclohexanone	2	200	0.02	0.03
1,2 Dichloroethane	1	200	17	0.2
Dichloromethan e	1	350	4	0.35
Diethyl ether	2	1200	-	0.3
Epichlorohydrin	1	4	-	0.004
Ethane	4	-	-	-
Ethanol	4	1900	7	30
Ethyl acetate	2	1400	0.6	3
Ethylene oxide	2	90	-	0.9
Formaldehyde	2	1.5	0.07	0.015
Furfuryl alcohol	2	20	-	0.02
normal-Heptane	2	1600	-	16

normal-Hexane Hydrazine Hydrochloric acid	2 1 2	360 0.13 7	- - 0.2	3.6 0.001 0.07
Hydrogen Hydrogen fluoride	4 1	2	-	- 0.006
Hydrogen phosphide	2	0.4	0.1	0.004
Hydrogen sulphide	2	15	0.0001	0.001
Isobutyl acetate Isopropyl alcohol	2 2	700 980	0.6	0.3 10
Methane	4	-	-	-
Methanol	2	260	4	2.6
Methyl acetate	2	610	0.002	0.005
Methyl bromide	1	20	-	0.02
Methylene bis phenyl isocyanate (MDI)	2	0.2	-	0.002
Methyl ethyl ketone	2	590	0.7	5
Methyl formate	2	250	-	2.5
Methyl isobutyl ketone	2	410	0.4	0.5
Methyl methacrylate	2	410	0.2	0.1
alpha- Methylstyrene	2	480	0.04	0.03
Monochloroben zene	1	350	-	0.35
Naphthalene	2	50	0.004	0.01
Nitric oxide (NO)	2	30	-	0.05
nitrous oxide (N2O)	2	4	0.1	
Ozone	2	0.2	0.015	0.002
normal-Pentane	2	360	_	3.6
Perchloroethyle	2	240	12	2.4

ne Phenol Phosgene normal-Propyl acetate	2 2 2	19 0.4 840	0.02 0.5	0.1 0.004 8.4
Propylene oxide Prussic acid Pyridine	2 2 2	240 11 15	- - 0.04	2.4 0.11 0.05
Styrene	2	420	0.02	0.03
monomer Sulphur dioxide Sulphuric acid	2 2	5 1	0.9	0.08 0.01
Toluene Toluene diisocyanate (TDI)	2 2	375 0.14	0.08	1 0.001
1,1,1- Trichloroethane	1	1080	-	1
1,1,2- Trichloroethane	2	45	-	0.045
Trichloroethylen e	2	190	-	1.9
Vinyl chloride	1	8	-	0.008
Xylene	2	435	0.6	1

SCHEDULE 6

[Reg. 33

RULES FOR INCINERATION AT LANDFILLS

- 1. This Schedule applies to a landfill that -
 - (a) has a capacity of at least 60,000 tonnes;
 - (b) contains at least 20,000 tonnes of waste; and
 - (c) accepts or is likely to accept waste that consists of 5% or more by weight of putrescible or biodegradable matter.
- 2. No fire may be lit or waste burned at a landfill, unless -
 - (a) the fire is to control gas formed at the landfill; and
 - (b) the flaring system complies with the requirements of this regulation.