POTENTIAL OF SPARTINA MARITIMA IN RESTORED SALT MARSHES FOR PHYTOREMEDIATION OF METALS IN A HIGHLY POLLUTED ESTUARY

G. Curado, A. E. Rubio-Casal, E. Figueroa, and J. M. Castillo

QUERY SHEET

This page lists questions we have about your paper. The numbers displayed at left can be found in the text of the paper for reference. In addition, please review your paper as a whole for correctness.

Q1. Au: Santos Bermejo et al. 2002: Citation in Reference list shows 2003. Which is correct?
Q2. Au: Santos Bermejo et al. 2003: Citation in text shows 2002. Which is correct?

TABLE OF CONTENTS LISTING

The table of contents for the journal will list your paper exactly as it appears below:
Potential of Spartina Maritima in Restored Salt Marshes for Phytoremediation of Metals in a Highly Polluted Estuary
G. Curado, A. E. Rubio-Casal, E. Figueroa, and J. M. Castillo

POTENTIAL OF SPARTINA MARITIMA IN RESTORED SALT MARSHES FOR PHYTOREMEDIATION OF METALS IN A HIGHLY POLLUTED ESTUARY

G. Curado, A. E. Rubio-Casal, E. Figueroa, and J. M. Castillo
Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
Sedimentary abiotic environment, and concentration and stock of nine metals were analyzed in vegetation and sediments to evaluate the phytoremediation capacity of restored Spartina maritima prairies in the highly polluted Odiel Marshes (SW Iberian Peninsula). Samples were collected in two 10 -m long rows parallel to the tidal line at two sediments depths ($0-2 \mathrm{~cm}$ and $2-20 \mathrm{~cm}$). Metal concentrations were measured by inductively coupled plasma spectroscopy. Iron, aluminum, copper, and zinc were the most concentrated metals. Every metal, except nickel, showed higher concentration in the root zone than at the sediment surface, with values as high as ca. $70 \mathrm{~g} \mathrm{Fe} \mathrm{kg}^{-1}$. The highest metal concentrations in S . maritima tissues were recorded in its roots (maximum for iron in Spartina roots: $4160.2 \pm$ $945.3 \mathrm{mg} \mathrm{kg}^{-1}$). Concentrations of aluminum and iron in leaves and roots were higher than in superficial sediments. Rhizosediments showed higher concentrations of every metal than plant tissues, except for nickel. Sediment metal stock in the first 20 cm deep was ca. 170.89 t ha^{-1}. Restored S. maritima prairies, with relative cover of $62 \pm 6 \%$, accumulated ca. 22 kg metals ha ${ }^{-1}$. Our results show S. maritima to be an useful biotool for phytoremediation projects in European salt marshes.
KEY WORDS biomass, halophytes, Odiel Marshes, phytoremediation, pollution, roots

INTRODUCTION

Coastal marshes are very vulnerable to metal contamination since they are located at river mouths (Beeftink 1977; Williams et al. 1994a), especially in the vicinity of mining and industrial areas (Curado et al. 2010). Potentially halophytes are ideal candidates for phytoextraction or phytostabilization of metal polluted soils and moreover of metal polluted soils affected by salinity (Manousaki and Kalogerakis 2011; De Lange et al. 2013). Constructed wetlands are commonly used to treat contaminated freshwater effluent. However, experience with saline systems is more limited (De Lange et al. 2013). In this context, some marsh plants such as Spartina alterniflora Loisel., Phragmites australis (Cav.) Trin. ex Steud., Sarcocornia perennis (Miller) A.J. Scott and Juncus maritimus Lam. can be used in restoration projects for phytoremediation in polluted estuaries since they concentrate

Address correspondence to Jesús M. Castillo, Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Ap. 1095, 41080 Sevilla, Spain. E-mail: manucas@us.es
contaminants in colonized sediments and in their tissues (Weis and Weis 2004; Czako et al. 2006; Gomes and Costa 2009; Duarte et al. 2010; Marques et al. 2011).

Once a restoration project has been implemented, good monitoring is essential to improving the restoration methodology for future applications, and to solving of unexpected problems during its evolution (England et al. 2008). Nevertheless, although a great deal of laboratory, microcosm and greenhouse studies of metal phytoremediation by wetland macrophytes have been carried out (e.g., Tang 1993; Weiss et al. 2006; Yadav et al. 2012; Anning et al. 2013), only a handful of studies have monitored the results of phytoremediation efforts in constructed wetlands in field settings and long-term field-based studies are rare (Williams 2002; Bert et al. 2009). However, Imfeld et al. (2009) discussed some of the key characteristics of constructed wetlands for removal of organic chemicals, and Vymazal et al. (2010) showed that concentrations of metals in the sediments of constructed wetlands used to treat municipal wastewater were low and comparable with those found in unpolluted natural wetlands. Teuchies et al. (2012) described how removal of metals and burial of contaminated sediments in restored salt marshes emphasize the potential of restoration projects to decrease contamination risks.

In the Odiel Marshes, globally one of the most metal-polluted salt marshes (Pérez et al. 1991; Ruiz 2001), an innovative restoration project was carried out from November 2006 to January 2007 using plantations of the Small Cordgrass, Spartina maritima (Curtis) Fernald. This project included phytostabilization of metal-polluted sediments as a specific restoration goal (Castillo and Figueroa 2009), since natural S. maritima prairies contribute effectively to the stabilization of metals in the sediments (Reboreda and Caçador 2007; Cambrollé et al. 2008; Reboreda et al. 2008; Caçador et al. 2009; Castillo and Figueroa 2009; Duarte et al. 2010).

The aim of this study was to analyze the sedimentary abiotic environment and to quantify the concentration and stock of nine metals ($\mathrm{Al}, \mathrm{As}, \mathrm{Cd}, \mathrm{Cr}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Ni}, \mathrm{Pb}$, and Zn) in the colonized sediment and tissue of Spartina maritima 28 months after planting, as a component of the integral monitoring and evaluation of the restoration project carried out in the Odiel Marshes (Castillo and Figueroa 2009). We hypothesized that expanding plantations of S. maritima growing on very polluted sediments would accumulate high metal loads in their tissues, as well as in colonized sediments. This study increases our knowledge about the phytoremediation capacity of salt marsh restoration projects based on halophytes plantations, specifically those carried out with cordgrasses.

MATERIAL AND METHODS

Study Site

Our work was carried out in a restored salt marsh area that borders the main channel of the joint estuary of the Odiel and Tinto rivers (south-west Iberian Peninsula; $37^{\circ} 08^{\prime}-37^{\circ} 20^{\prime} \mathrm{N}, 6^{\circ} 45^{\prime}-7^{\circ} 02^{\prime} \mathrm{W}$). This area was restored from November 2006 to January 2007 using mainly S. maritima plantations (8.37 ha). S. maritima clumps coming from natural populations were planted manually at a density of 1 clump m^{-2} (ca. 20 shoots clump ${ }^{-1}$) after invasive Spartina densiflora Brongn. was eliminated manually from 2.00 ha around the site (Castillo and Figueroa 2009). During the study period plant community composition in restored marshes was mainly continuous prairies of S. maritima with a relative cover of ca. 62% and a tiller height of ca. 34 cm . Isolated clumps of Zostera noltii Hornem. grew at lower elevations and S. perennis, with ca. 15% of relative cover,

Figure 1 Location of Odiel Marshes on the Atlantic coast of Southwest Iberian Peninsula ($37^{\circ} 08^{\prime}-37^{\circ} 20^{\prime} \mathrm{N}$, $6^{\circ} 45^{\prime}-7^{\circ} 02^{\prime} \mathrm{W}$), and the restored area where our work was carried out (1).
was the most abundant halophyte besides S. maritima at higher elevations. The hybrid S. perennis x fruticosa, Atriplex portulacoides L., Suaeda maritima (L.) Dumort., Arthrocnemum macrostachyum (Moric.) Moris., Salicornia ramosissima J. Woods and Suaeda vera Forsskal ex J.F. Gmelin. were also present at higher elevations (Curado et al. 2012, 2013). The area is very polluted with metals coming from two sources: industrial activities developed in the estuary and long-term mining activities carried out landward at the Iberian Pyrite Belt (van Geen et al. 1997; Leblanc et al. 2000) (Figure 1).

Abiotic Environment

Every abiotic characteristic described below was recorded from sampling points along two $10-\mathrm{m}$ long rows in sediments colonized by Spartina maritima that we established parallel to the tidal line (10 equidistant sampling points per row) between +2.16 and +2.67 m SHZ in May-July $2009(\mathrm{n}=20)$ (Fig. 2).

4 G. CURADO ET AL.

Figure 2 Restored marshes planted with S. maritima in Odiel Marshes showing sampling points along rows parallel to the tidal line (1), accretion / erosion marker (2), and nylon horizon to collect deposited sediments (3) (Color figure available online).

Elevation relative to Spanish Hydrographic Zero (SHZ) was surveyed to a resolution of 2 cm with a Leica NA 820 theodolite (Singapore); reference points were determined in relation to measurements of tidal extremes (Ranwell et al. 1964). Every sediment characteristic was recorded between 0 and 10 cm deep, except for the redox potential, which was sampled at the surface $(0-2 \mathrm{~cm})$ and at depth $(2-20 \mathrm{~cm}) . \mathrm{pH}(\mathrm{pH} /$ redox Crison with the electrode $M-506$) and electrical conductivity (conductivity meter, Crison-522) were recorded in the laboratory after adding distilled water to the sediment with $1: 1, \mathrm{v} / \mathrm{v}$ and $1: 2, \mathrm{v} / \mathrm{v}$, respectively. Redox potential of the sediment was determined in the field with a portable meter and electrode system (Crison $\mathrm{pH} / \mathrm{mV}$ p-506). Sediment bulk dry density was recorded by weighing (DW) the volume of sediments in a cylindrical core of 5 cm diameter $\times 5 \mathrm{~cm}$ height. Sedimentation rate was determined by markers consisting in an iron structure with two vertical posts (ca. 1.5 m tall and 1 cm diameter) inserted in the sediment to a depth of approximately 1 m in S. maritima areas and supporting a horizontal crossbar (ca. 0.5 m long). The distance from the middle point of the crossbar to the sediment surface was measured quarterly from March 2009 to March $2010(\mathrm{n}=9)$ (Curado et al.

[^0]
Metal Analysis

Samples were collected for determination of the concentrations of Al, As, $\mathrm{Cd}, \mathrm{Cr}, \mathrm{Cu}, 109$ $\mathrm{Fe}, \mathrm{Ni}, \mathrm{Pb}$, and Zn from sampling points along the same two $10-\mathrm{m}$ long rows established
parallel to the tidal line where the abiotic parameters were measured. These samples included: (1) superficial sediments ($0-2 \mathrm{~cm}$ deep) collected in S. maritima areas on nylon horizons between April and October 2008 (Salgueiro and Caçador 2007); (2) sediments between $2-20 \mathrm{~cm}$ deep colonized by S. maritima roots $(\mathrm{n}=10)$ in July 2009; and (3) leaves, non-photosynthetic stems, rhizomes and roots of S. maritima in July $2009(\mathrm{n}=10)$ (Fig. 2).

Samples were dried to constant weight at $80^{\circ} \mathrm{C}$ for 48 h , pulverized using a grinder (Cyclotec, Foss Tecator AB, Höganäs, Sweden), and then sieved through an $80 \mu \mathrm{~m}$ screen. Samples were digested in $6 \mathrm{ml} \mathrm{HNO}_{3}$ and 25 ml ultrapure water using microwaves (Anton Paar, multiwave 3000, Austria). The product was measured by inductively coupled plasma (ICP) spectroscopy (Horiba Jobin Yvon, Última 2, France).

The lowest detection hold showed when the concentration was below the detection limit. For the sediment samples that showed metal concentrations under the detection limit, mean concentration was calculated considering these samples with a value of $0.1 \mathrm{mg} \mathrm{kg}^{-1}$ DW for $\mathrm{Zn}, \mathrm{Cu}, \mathrm{Cd}, \mathrm{Cr}, \mathrm{Ni}, \mathrm{Al}, \mathrm{Fe} ; 0.3 \mathrm{mg} \mathrm{kg}{ }^{-1}$ DW for As and $0.6 \mathrm{mg} \mathrm{kg}^{-1} \mathrm{DW}$ for Pb in soil. For S. maritima, these values were $0.05 \mathrm{mg} \mathrm{kg}{ }^{-1} \mathrm{DW}$ for $\mathrm{Zn}, \mathrm{Cu}, \mathrm{Cd}, \mathrm{Cr}, \mathrm{Ni}, \mathrm{Al}, \mathrm{Fe}$; $0.15 \mathrm{mg} \mathrm{kg}^{-1} \mathrm{DW}$ for As and $0.3 \mathrm{mg} \mathrm{kg}^{-1} \mathrm{DW}$ for Pb .

Metal Stocks

Metal stocks in S. maritima sediments were calculated as the product of each metal concentration (in $\mathrm{mg} \mathrm{kg}^{-1}$ dry weight (DW)) and the mass of sediment at the surface ($0-2 \mathrm{~cm}$ deep) and at depth ($2-20 \mathrm{~cm}$ deep). The mass of sediment was calculated as the product of the volume (restored area * depth) and its bulk dry density.

Metal stocks in S. maritima tissues were calculated both for areas totally colonized by the cordgrass (monospecific cover of 100%) and for the entire restored area. Firstly, each metal concentration (in $\mathrm{mg} \mathrm{g}^{-1} \mathrm{DW}$) was multiplied by the biomass of every plant organ (in $\mathrm{g} \mathrm{D} \mathrm{m}^{-2}$) to calculate metal stocks for areas totally colonized by S. maritima. Then, the metal stocks for the entire restored area was calculated by multiplying the metal stocks for the totally colonized areas by the total restored area (8.37 ha) and by S. maritima relative cover (relative cover was 0.62 in Spartina prairies; Curado et al. 2012). S. maritima biomass was recorded in October 2009 in totally colonized $10-\mathrm{cm}$ quadrant plots ($\mathrm{n}=$ 10). In the laboratory, biomass was washed carefully, plant structures were separated and dried to constant weight at $80^{\circ} \mathrm{C}$ for 48 h . In addition, net annual standing above- and below-ground productivity (NAPP and NBPP) for S. maritima prairies were calculated as the total AGB or BGB, respectively, divided by years since transplantation. Sampling plots for biomass were located in areas with bare sediments adjacent to clumps just after transplanting, to ensure that all the standing biomass was effectively produced in situ after restoration plantings (Castillo et al. 2008a). No evidence of herbivory by cattle, rabbits or crabs was observed during the study.

Statistical Analysis

Analyses were carried out using SPSS release 14.0 (SPSS Inc., Chicago, IL). Deviations were calculated as the standard error of the mean (SEM). Data were tested for normality with the Kolmogorov-Smirnov test and for homogeneity of variance with the Levene test $(\mathrm{P}>0.05)$. When no homogeneity of variance between groups was found, data were transformed using the following functions: $\ln (\mathrm{x}), 1 / \mathrm{x}$ and $\sqrt{ } \mathrm{x}$. Student's t-test
G. CURADO ET AL.
for independent samples was applied to compare two means. If homogeneity of variance
was not achieved by data transformation, then means were compared using Mann-Whitney 156
U-test. Variations in metal loads between organs were compared by one-way Anova (analysis of variance). Tukey's test between means was calculated only if the F-test was significant ($\mathrm{P}<0.05$). If homogeneity of variance was not achieved by data transformation, then the means were compared by a Kruskal-Wallis non parametric Anova.

RESULTS AND DISCUSSION

Abiotic Environment

In the restored S. maritima marshes, sediment surface was at a mean elevation of 163 $+2.28 \pm 0.06 \mathrm{~m} \mathrm{SHZ}$, sediment pH was close to neutrality (7.1 ± 0.1) and sediment electrical conductivity was $15.2 \pm 1.5 \mathrm{mS} \mathrm{cm}^{-1}$. Redox potential was similar at sediment surface $(-5 \pm 18 \mathrm{mV})$ and at depth $(-44 \pm 20 \mathrm{mV})(t$-test, $\mathrm{P}>0.05)$. Sediment bulk dry density was $0.80 \pm 0.06 \mathrm{~g} \mathrm{~cm}^{-3}$ and sedimentation rate was $+2.6 \pm 0.3 \mathrm{~cm} \mathrm{yr}^{-1}$.

Metal Concentrations

Iron, aluminum, copper, and zinc were the most concentrated metals in both superfi- 169 cial sediments and rhizosediments (sediment surrounding Spartina roots). This same trend was described in North America (Hudson River estuary) where the most abundant metals in superficial sediments also were iron, aluminum, copper, and zinc as well as lead. Fe concentration was lower in the Odiel Marshes while Cu and Zn concentration were higher170171 in our study than those recorded in the contaminated Hudson River estuary (Feng et al.174 1998). Every metal, except nickel, showed higher concentration in the root zone than at 175 the surface (Al, Cu and Fe : Mann-Whitney U-test, $\mathrm{P}<0.001 ; \mathrm{Cd}, \mathrm{Cr}, \mathrm{Pb}, \mathrm{Zn}$, and As: 176 t-test, $\mathrm{P}<0.01, \mathrm{df}=8$), with values as high as ca. $70 \mathrm{~g} \mathrm{Fe} \mathrm{kg} \mathrm{DW}^{-1}$ (Table 1). The high 177 concentration of metals in rhizosediments could be related with transport and precipitation 178 of metals in the rhizosphere (Caçador et al. 1996a). Previous studies have recorded higher 179 metal concentrations in sediments colonized by roots of S. maritima than in sediments 180 without roots (Caçador et al. 1996a, 1996b; Reboreda and Caçador 2007; Cambrollé et al. 181 2008; Reboreda et al. 2008). Reported metal concentrations were in accordance with those 182

Table 1 Metal concentrations ($\mathrm{mg} \mathrm{kg} \mathrm{DW}{ }^{-1}$) in superficial sediments ($0-2 \mathrm{~cm}$ deep) and rhizosediments ($2-20 \mathrm{~cm}$ deep) 28 months after transplanting Spartina maritima in the Odiel Marshes (south-west Iberian Peninsula) ($\mathrm{n}=$ $10)$. Different coefficients indicate significant differences between depths (t-test or U-test, $\mathrm{P}<0.01$)

Metal	Surface $(0-2 \mathrm{~cm})$	Depth $(2-20 \mathrm{~cm})$	TOTAL
Al	$568.4 \pm 102.5^{\mathrm{a}}$	$43375.6 \pm 4065.2^{\mathrm{b}}$	43944.0 ± 4087.1
As	$138.3 \pm 34.4^{\mathrm{a}}$	$340.4 \pm 51.8^{\mathrm{b}}$	478.7 ± 78.6
Cd	$0.4 \pm 0.1^{\mathrm{a}}$	$19.5 \pm 1.8^{\mathrm{b}}$	19.9 ± 1.8
Cr	$18.0 \pm 4.9^{\mathrm{a}}$	$68.0 \pm 2.9^{\mathrm{b}}$	86.0 ± 4.7
Cu	$405.2 \pm 114.3^{\mathrm{a}}$	$3085.5 \pm 293.0^{\mathrm{b}}$	3490.7 ± 294.4
Fe	$808.0 \pm 179.7^{\mathrm{a}}$	$69138.7 \pm 6509.0^{\mathrm{b}}$	69946.7 ± 6572.0
Ni	$10.5 \pm 4.2^{\mathrm{a}}$	$21.4 \pm 2.18^{\mathrm{a}}$	31.9 ± 4.6
Pb	$120.3 \pm 30.9^{\mathrm{a}}$	$512.6 \pm 61.3^{\mathrm{b}}$	632.9 ± 81.2
Zn	$467.8 \pm 105.4^{\mathrm{a}}$	$1831.4 \pm 179.8^{\mathrm{b}}$	2299.2 ± 232.7
TOTAL	$2536.7 \pm 565.8^{\mathrm{a}}$	$118393.0 \pm 10816.7^{\mathrm{b}}$	120929.7 ± 10996.0

Table 2 Metal concentrations ($\mathrm{mg} \mathrm{kg} \mathrm{DW}^{-1}$) in leaves, stems, rhizomes and roots 28 months after transplanting Spartina maritima in the Odiel Marshes $(\mathrm{n}=10)$. Different coefficients indicate significant differences between organs (analysis of variance, $\mathrm{P}<0.05$). (* measurements under the detection threshold)

Metal	Leaves	Stems	Rhizomes	Roots
Al	$1356.4 \pm 130.7^{\mathrm{a}}$	$236.5 \pm 33.7^{\mathrm{b}}$	$297.8 \pm 38.4^{\mathrm{b}}$	$1334.9 \pm 109.6^{\mathrm{a}}$
As	$5.7 \pm 0.4^{\mathrm{a}^{\mathrm{a}}}$	$1.2 \pm 0.1^{\mathrm{b}}$	$3.2 \pm 0.3^{\mathrm{c}}$	$29.0 \pm 7.1^{\mathrm{d}}$
Cd	$0.4 \pm 0.0^{\mathrm{a}}$	$0.7 \pm 0.2^{\mathrm{ab}}$	$1.0 \pm 0.2^{\mathrm{b}}$	$2.4 \pm 0.5^{\mathrm{c}}$
Cr	$3.7 \pm 0.3^{\mathrm{a}}$	$1.1 \pm 0.1^{\mathrm{b}}$	$1.3 \pm 0.1^{\mathrm{b}}$	$3.9 \pm 0.6^{\mathrm{a}}$
Cu	$83.0 \pm 5.0^{\mathrm{a}}$	$35.9 \pm 4.3^{\mathrm{b}}$	$74.1 \pm 9.9^{\mathrm{a}}$	$348.3 \pm 58.2^{\mathrm{c}}$
Fe	$1513.2 \pm 136.7^{\mathrm{a}}$	$270.0 \pm 22.3^{\mathrm{b}}$	$635.9 \pm 83.1^{\mathrm{c}}$	$4160.2 \pm 945.3^{\mathrm{d}}$
Ni	$99.6 \pm 9.1^{\mathrm{a}}$	$118.6 \pm 11.5^{\mathrm{ab}}$	$199.4 \pm 0.6^{\mathrm{b}}$	$245.4 \pm 48.9^{\mathrm{c}}$
Pb	$4.5 \pm 0.7^{\mathrm{a}}$	$*$	$0.4 \pm 0.1^{\mathrm{c}}$	$6.0 \pm 2.4^{\mathrm{b}}$
Zn	$102.1 \pm 9.4^{\mathrm{a}}$	$32.5 \pm 10.9^{\mathrm{b}}$	$48.2 \pm 13.9^{\mathrm{b}}$	$193.1 \pm 54.1^{\mathrm{c}}$
TOTAL	$3168.5 \pm 274.2^{\mathrm{a}}$	$696.5 \pm 57.7^{\mathrm{b}}$	$1261.0 \pm 103.5^{\mathrm{ab}}$	$6323.1 \pm 967.7^{\mathrm{c}}$

recorded previously in sediments from the Odiel Marshes (e.g. Luque et al. 1998; Santos Bermejo et al. 2002[]; Cambrollé et al. 2008, 2011; Sánchez-Moyano et al. 2010).

The highest metal concentrations for S. maritima tissues were recorded in the roots (Table 2), denoting a high capacity for metal immobilization in the subterranean biomass to protect photosynthetic tissues (Fitzgerald et al. 2003; Duarte et al. 2010). Species of Spartina, such as Spartina patens (Aiton) Muhl and S. densiflora also accumulated metals in their roots without significant translocation into their shoots (Suntornvongsagul et al. 2007; Cambrollé et al. 2008). S. densiflora has also been described as accumulating high concentrations of organochlorine compounds in its BGB in South America salt marshes (Menone et al. 2000).

Aluminum and chrome in S. maritima showed similar concentrations in roots and leaves (Al: t-test, $\mathrm{P}>0.05$; Cr: U-test, $\mathrm{P}>0.05$) (Table 2). Reported metal concentrations were in accordance with those recorded previously for S. maritima in the Odiel Marshes (Cambrollé et al. 2008) and Tagus estuary, except for lead and copper (Caçador et al. 1996a; Reboreda et al. 2008; Duarte et al. 2010). In Portuguese marshes in the same season, lead concentration was higher and copper concentration was lower in S. maritima roots than in our study.
S. maritima roots had a metal load three times higher than superficial sediments (however Zn, Pb, and As were less concentrated in Spartina roots than in the sediments). Nevertheless, rhizosediments showed higher concentrations of every metal than in plant tissues, except for nickel, which was more concentrated in plant tissues $(t$-test or U-test, $\mathrm{P}<0.001$) (Tables 1 and 2). Previous works with halophytes have described that the metal concentration in sediments was not reflected in their tissues; only zinc concentrations in plant material reflected levels within the sediment (Williams et al. 1994b). In contrast, we recorded lower zinc concentration in plant tissues than in sediments (Tables 1 and 2). Nickel was more accumulated in all plant tissues than in the sediments (Tables 1 and 2), but not hyperaccumulated, according to Brooks et al. (1977). Hyperaccumulation thresholds in the aerial plant tissues have been established as $1000 \mathrm{mg} \mathrm{kg}^{-1}$ for copper, chrome, nickel, lead, arsenic and aluminum, $10000 \mathrm{mg} \mathrm{kg}^{-1}$ for zinc, and $100 \mathrm{mg} \mathrm{kg}^{-1}$ for cadmium (Brooks et al. 1977; Baker and Brooks 1989; Jansen et al. 2002; Robinson et al. 2006). For iron, it was not possible to find any general threshold of hyperaccumulation (Branquinho et al. 2007). Following this, S. maritima only hyperaccumulated aluminum in aerial tissues and iron was
accumulated above $1000 \mathrm{mg} \mathrm{kg}^{-1} \mathrm{DW}$, reaching a value of ca. 0.42% DW in Spartina roots. 215 Thus, aluminum and iron in S. maritima were accumulated at higher concentrations than 216 in superficial sediments both in leaves (U-test, $\mathrm{P}<0.001$) and roots (U-test, $\mathrm{P}<0.001$) 217 (Tables 1 and 2). In anoxic (low redox potential) and neutral sediments with salinities as 218 high as those of the studied restored marshes, zinc, chrome and cadmium would be the 219 most bioavailable metals (Guo et al. 1997; López-González et al. 2005). In fact, cadmium 220 was more concentrated in rhizomes and roots of S. maritima than in superficial sediments 221 (rhizomes: t-test $=-2.733, \mathrm{P}<0.05, \mathrm{df}=18$; roots: U-test $=14.000, \mathrm{P}<0.01$). However, 222 cadmium and chrome did not reach high concentrations in plant tissues, probably because 223 their total sediment concentrations were low (Tables 1 and 2). 224

Metals Stocks

Sediment metal stock in the first 20 cm deep was ca. $1430.3 \mathrm{t}\left(170.89 \mathrm{t} \mathrm{ha}{ }^{-1}\right)$. Iron 226 was the most abundant metal (ca. 834 t , $99.69 \mathrm{t} \mathrm{Fe} \mathrm{ha}{ }^{-1}$), followed by aluminum (ca. 524227 $\mathrm{t}, 62.55 \mathrm{t} \mathrm{Al} \mathrm{ha}{ }^{-1}$), copper ($\mathrm{ca} .38 \mathrm{t}, 4.51 \mathrm{t} \mathrm{Cu} \mathrm{ha}$), and zinc (ca. $23 \mathrm{t}, 2.71 \mathrm{t} \mathrm{Zn} \mathrm{ha}{ }^{-1}$) 228 (Table 3). $2176 \mathrm{~m}^{3}$ of sediments were deposited annually in Spartina areas (8.37 ha), which 229 represented 1.3 times the pool of metals in the first 2 cm (Table 3). Previous work in S. 230 maritima natural and restored marshes recorded also high sedimentation rates in accordance 231 with our results (Salgueiro and Caçador 2007; Curado et al. 2012).

Biomass of S. maritima in leaves $\left(356 \pm 53 \mathrm{~g} \mathrm{DW} \mathrm{m}^{-2}\right)$ and in roots $(192 \pm 44 \mathrm{~g} 233$ DW m^{-2}) showed higher total metal stocks than stems $\left(935 \pm 145 \mathrm{~g} \mathrm{DW} \mathrm{m}^{-2}\right)$ and rhizomes 234 ($424 \pm 60 \mathrm{~g} \mathrm{DW} \mathrm{m}^{-2}$) (Kruskal-Wallis, $\chi^{2}=22.515, \mathrm{P}<0.001, \mathrm{df}=3$) (Table 4). Iron and 235 aluminum showed the highest metal stocks in S. maritima tissues and cadmium, lead and 236 chrome the least (Tables 2, 3, and 4). About 2.5 yr after transplanting, S. maritima prairies, 237 with relative cover of $62 \pm 6 \%$ in 8.37 ha of restored marshes, accumulated $182 \pm 12 \mathrm{~kg} 238$ of metals (ca. $22 \mathrm{~kg} \mathrm{ha}^{-1}$), corresponding to 152 kg of iron and aluminum (ca. $18 \mathrm{~kg} \mathrm{ha}^{-1}$) 239 (Table 3). The recorded values of BGB for S. maritima (ca. $0.63 \mathrm{~kg} \mathrm{DW} \mathrm{m}^{-2}$) were lower 240 than those reported previously for natural populations in the Tajo estuary $(3.60 \pm 0.15 \mathrm{~kg} 241$ DW m^{-2} by Reboreda and Caçador 2007) and in the Odiel Marshes (from 4.82 ± 0.59 to

Table 3 Metal stock ($\mathrm{kg} \mathrm{ha}^{-1}$) in the first twenty centimeter of sediment and in Spartina maritima biomass for restored salt marshes 28 months after transplanting (8.37 ha with a S. maritima relative cover of 62%) in the Odiel Marshes $(\mathrm{n}=10)$. Different coefficients indicate significant differences between surface and depth $(t$-test or U-test, $\mathrm{P}<0.05$)

	Sediments colonized by S. maritima		TOTAL in sediments	S. maritima biomass
Metal	$(0-2 \mathrm{~cm})$	$(2-20 \mathrm{~cm})$	$(0-20 \mathrm{~cm})$	
Al	$90.9 \pm 16.4^{\mathrm{a}}$	$62460.8 \pm 5853.8^{\mathrm{b}}$	62551.8 ± 5857.2	6.7 ± 0.6
As	$22.1 \pm 5.5^{\mathrm{a}}$	$490.1 \pm 74.5^{\mathrm{b}}$	$512.2 \pm 78.2 .6$	0.1 ± 0.0
Cd	$0.1 \pm 0.0^{\mathrm{a}}$	$28.1 \pm 2.6^{\mathrm{b}}$	28.2 ± 2.6	0.0 ± 0.0
Cr	$2.9 \pm 0.8^{\mathrm{a}}$	$97.9 \pm 4.2^{\mathrm{b}}$	100.7 ± 4.0	0.0 ± 0.0
Cu	$64.8 \pm 18.3^{\mathrm{a}}$	$4443.1 \pm 422.0^{\mathrm{b}}$	4507.9 ± 419.0	1.0 ± 0.1
Fe	$129.3 \pm 28.8^{\mathrm{a}}$	$99559.8 \pm 9373.0^{\mathrm{b}}$	99689.1 ± 9382.7	11.5 ± 1.3
Ni	$1.7 \pm 0.7^{\mathrm{a}}$	$30.8 . \pm 3.1^{\mathrm{b}}$	32.5 ± 3.2	1.7 ± 0.1
Pb	$19.2 \pm 4.9^{\mathrm{a}}$	$738.2 \pm 88.3^{\mathrm{b}}$	757.4 ± 90.8	0.0 ± 0.0
Zn	$74.8 \pm 16.9^{\mathrm{a}}$	$2637.2 \pm 258.9^{\mathrm{b}}$	2712.0 ± 264.1	0.8 ± 0.1
TOTAL	$405.9 \pm 90.5^{\mathrm{a}}$	$170486.0 \pm 15576.1^{\mathrm{b}}$	170891.9 ± 15602.8	21.8 ± 1.4

Table 4 Metals accumulated in leaves, stems, rhizomes and roots $\left(\mathrm{g} \mathrm{m}^{-2}\right)$ in totally colonized areas of Spartina maritima 28 months after transplanting in the Odiel Marshes ($\mathrm{n}=10$). Different coefficients indicate significant differences between organs (analysis of variance, $\mathrm{P}<0.05$). (${ }^{*}$ measurements under the detection threshold)

Metal	Leaves	Stems	Rhizomes	Roots	TOTAL
Al	$0.4826 \pm 0.0465^{\mathrm{a}}$	$0.2210 \pm 0.0314^{\mathrm{bc}}$	$0.1263 \pm 0.0163^{\mathrm{b}}$	$0.2559 \pm 0.0210^{\mathrm{c}}$	1.0858 ± 0.0898
As	$0.0020 \pm 0.0001^{\mathrm{a}}$	$0.0009 \pm 0.0001^{\mathrm{b}}$	$0.0014 \pm 0.001^{\mathrm{b}}$	$0.0056 \pm 0.0013^{\mathrm{ab}}$	0.0099 ± 0.0015
Cd	$0.0001 \pm 0.0000^{\mathrm{a}}$	$0.0005 \pm 0.0001^{\mathrm{ab}}$	$0.0004 \pm 0.0000^{\mathrm{ab}}$	$0.0005 \pm 0.0001^{\mathrm{b}}$	0.0015 ± 0.0002
Cr	$0.0013 \pm 0.0001^{\mathrm{a}}$	$0.0011 \pm 0.0001^{\mathrm{ab}}$	$0.0006 \pm 0.0000^{\mathrm{c}}$	$0.0007 \pm 0.0001^{\mathrm{bc}}$	0.0037 ± 0.0003
Cu	$0.0295 \pm 0.0018^{\mathrm{a}}$	$0.0336 \pm 0.0040^{\mathrm{a}}$	$0.0314 \pm 0.0042^{\mathrm{a}}$	$0.0668 \pm 0.0112^{\mathrm{b}}$	0.1613 ± 0.0168
Fe	$0.5384 \pm 0.0486^{\mathrm{ab}}$	$0.2523 \pm 0.0208^{\mathrm{a}}$	$0.2696 \pm 0.3523^{\mathrm{a}}$	$0.7975 \pm 0.1812^{\mathrm{b}}$	1.8579 ± 0.2174
Ni	$0.0354 \pm 0.0032^{\mathrm{a}}$	$0.1108 \pm 0.0107^{\mathrm{b}}$	$0.0845 \pm 0.0084^{\mathrm{b}}$	$0.0470 \pm 0.0094^{\mathrm{a}}$	0.2778 ± 0.0189
Pb	$0.0016 \pm 0.0002^{\mathrm{a}}$	$*$	$0.0001 \pm 0.0000^{\mathrm{b}}$	$0.0011 \pm 0.0005^{\mathrm{a}}$	0.0028 ± 0.0005
Zn	$0.0363 \pm 0.0033^{\mathrm{a}}$	$0.0273 \pm 0.0100^{\mathrm{a}}$	$0.0205 \pm 0.0059^{\mathrm{a}}$	$0.0370 \pm 0.0104^{\mathrm{a}}$	0.1211 ± 0.0242
TOTAL	$1.1274 \pm 0.0976^{\mathrm{a}}$	$0.6478 \pm 0.0563^{\mathrm{b}}$	$0.5348 \pm 0.0439^{\mathrm{b}}$	$1.2121 \pm 0.1885^{\mathrm{a}}$	3.5219 ± 0.2314

$7.46 \pm 1.35 \mathrm{~kg}$ DW m${ }^{-2}$ by Castillo et al. 2008a,2008b). These differences seemed to be related to the slower development of BGB in relation to AGB in transplanted populations of S. maritima (Castillo et al. 2008a). Then, even more metals would be captured by BGB during the maturation of the restored marshes.

The total recorded metal pool in S. maritima areas 28 months after transplanting, including their sediments in the first 20 cm deep, was $1430.5 \mathrm{t}\left(170.91 \mathrm{t} \mathrm{ha}^{-1}\right)$, corresponding only by 0.013% to vegetation; ca. 4.4 t metals $\left(0.53 \mathrm{t} \mathrm{ha}^{-1}\right)$ were added annually by sedimentation and ca. 0.1 t metals yr^{-1} was sequestered by S. maritima expansion (NBPP of $264 \pm 42 \mathrm{~g} \mathrm{DW} \mathrm{m}^{-2} \mathrm{yr}^{-1}$ and a NAPP of $553 \pm 83 \mathrm{~g} \mathrm{DW} \mathrm{m}^{-2} \mathrm{yr}^{-1}$).

Our results showed that S. maritima can be a useful biotool for phytoremediation projects in European polluted salt marshes at low elevations in the tidal gradient. S. maritima may be used for phytoextraction and phytostabilization since it promotes sedimentation at the same time that concentrates metals in its rhizosediments. In phytoextraction, sediments adhered to the roots should be extracted together with the plants, since they are rich in metals (as proposed by Almeida et al. (2004) for Juncus maritimus Lam). Although phytoextraction using Spartina maritima can provide some environmental benefits, this strategy will not be a complete solution in the Odiel Marshes because the salt marshes continuously receive sediments with high metal loads coming from the Iberian Pyrite Belt transported along Odiel and Tinto rivers (Nieto et al. 2007). This is the first study quantifying the phytoextraction and phytostabilization capacity of S. maritima plantations, which may be very helpful for phytoremediation projects in polluted European estuaries.

ACKNOWLEDGMENTS

We thank the Port Authority of Huelva for their sponsorship of the monitoring ecological engineering project in the Odiel Marshes. We also thank microanalysis service of CITIUS for collaboration and Dr. Brenda Grewell for the language editing.

REFERENCES

Almeida CMR, Mucha AP, Vasconcelos MTSD. 2004. Influence of the sea rush Juncus maritimus on metal concentration and speciation in estuarine sediment colonized by the plant. Environ Sci Technol 38(11):3112-3118.
Anning AK, Korsah PE, Addo-Fordjour P. 2013. Phytoremediation of wastewater with Lim- 272
nocharis flava, Thalia geniculata and Typha latifolia in constructed wetlands. Int J Phytorem 273
15(5):452-464. 274
Baker AJM, Brooks RR. 1989. Terrestrial higher plants which hyperaccumulate metallic elements. 275
A review of their distribution, ecology and phytochemistry. Biorecovery 1(2):81-126. 276
Beeftink WG. 1977. Salt-marshes. In: Barnes RSK, editor. The Coastline. New York (NY): Wiley. 277
p. 93-121. 278
Bert V, Seuntjens P, Dejonghe W, Lacherez S, Thuy HTT, Vandecasteele B. 2009. Phytoremediation 279
as a management option for contaminated sediments in tidal marshes, flood control areas and 280
dredged sediment landfill sites. Environ Sci Pollut Res 16(7):745-764. 281
Branquinho C, Serrano H L, Pinto MJ, Martins-Louçao MA. 2007. Revisiting the plant hyperaccu- 282mulation criteria to rare plants and earth abundant elements. Environ Pollut 146(2):437-443. 283
Brooks RR, Lee J, Reeves RD, Jaffré T. 1977. Detection of nickeliferous rocks by analysis of 284herbarium specimens of indicator plants. J Geochem Explor 7(1):49-57. 285
Caçador I, Caetano M, Duarte B, Vale C. 2009. Stock and losses of trace metals from salt marsh 286
plants. Mar Environ Res 67(2):75-82. 287
Caçador I, Vale C, Catarino F. 1996a. Accumulation of $\mathrm{Zn}, \mathrm{Pb}, \mathrm{Cu}, \mathrm{Cr}$ and Ni in sediments between 288roots of the Tagus Estuary salt marshes, Portugal. Estuar Coast Shelf Sci 42(3):393-403. 289
Caçador I, Vale C, Catarino F. 1996b. The influence of plants on concentration and fractionation of 290
Zn, Pb, and Cu in salt marsh sediments (Tagus Estuary, Portugal). J Aquat Ecosyst Health 291
5(3):193-198. 292
Cambrollé J, Mateos-Naranjo E, Redondo-Gómez S, Luque T, Figueroa ME. 2011. The role of two 293
Spartina species in phytostabilization and bioaccumulation of Co, Cr, and Ni in the Tinto-Odiel 294
estuary (SW Spain). Hydrobiologia 671(1):95-103. 295
Cambrollé J, Redondo-Gómez S, Mateos-Naranjo E, Figueroa ME. 2008. Comparison of the role 296
of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the 297
estuarine sediment. Mar Pollut Bull 56(12):2037-2042. 298
Castillo JM, Figueroa ME. 2009. Restoring salt marshes using small cordgrass, Spartina maritima. 299
Restor Ecol 17(3):324-326. 300
Castillo JM, Leira-Doce P, Rubio-Casal AE, Figueroa ME. 2008a. Spatial and temporal variations in 301aboveground and belowground biomass of Spartina maritima (small cordgrass) in created and 302natural marshes. Estuar Coast Shelf Sci 78(4):819-826.303
Castillo JM, Mateos-Naranjo E, Nieva FJ, Figueroa ME. 2008b. Plant zonation at salt marshes of 304
the endangered cordgrass Spartina maritima invaded by Spartina densiflora. Hydrobiologia 305
614(1):363-371. 306
Curado G, Figueroa ME, Castillo JM. 2012. Vertical sediment dynamic in Spartina maritima restored, 307non-restored and preserved marshes. Ecol Eng 47:30-35.308
Curado G, Rubio-Casal AE, Figueroa ME, Castillo JM. 2010. Germination and establishment of 309
the invasive cordgrass Spartina densiflora in acidic and metal polluted sediments of the Tinto 310
River. Mar Pollut Bull 60(10):1842-1848. 311
Curado G, Rubio-Casal AE, Figueroa ME, Castillo JM. 2013. Plant zonation in restored, nonrestored, 312
and preserved Spartina maritima salt marshes. J Coast Res (In Press). DOI: 10.2112/jcoastres- 313
d-12-00089.1. 314
Czako M, Feng XZ, He YK, Liang DL, Marton L. 2006. Transgenic Spartina alterniflora for phy- 315
toremediation. Environ Geochem Health 28(1-2):103-110. 316
De Lange HJ, Paulissen MPCP, Slim PA. 2013. Halophyte filters': the potential of constructed 317
wetlands for application in saline aquaculture. Int J Phytorem 15(4):352-364. 318
Duarte B, Caetano M, Almeida PR, Vale C, Caçador I. 2010. Accumulation and biological cycling 319
of heavy metal in four salt marsh species, from Tagus Estuary (Portugal). Environ Pollut 320
158(5):1661-1668. 321
England J, Skinner KS, Carter MG. 2008. Monitoring, river restoration and the Water Framework 322
Directive. Water Environ J 22(4):227-234. 323

Feng H, Cochran JK, Lwiza H, Brownawell BJ, Hirschberg DJ. 1998. Distribution of heavy metal and PCB contaminant in the sediments of an urban estuary: The Hudson River. Mar Environ Res 45(1):69-88.
Fitzgerald EJ, Caffrey JM, Nesaratnam ST, McLoughlin P. 2003. Copper and lead concentrations in salt mash plants on the Suir Estuary, Ireland. Environ Pollut 123(1):67-74.
Gomes NA, Costa CSB. 2009. Survival and growth of the dominant salt marsh grass Spartina alterniflora in an oil industry saline wastewater. Int J Phytorem 11(7):640-650.
Gou T, DeLaune RD, Patrick Jr WH. 1997. The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium and zinc in estuarine sediment. Environ Int 23(3):305-316.
Imfeld G, Braeckevelt M, Kuschk P, Richnow HH. 2009. Monitoring and assessing processes of organic chemicals removal in constructed wetlands. Chemosphere 74(3):349-362.
Jansen S, Broadley MR, Robbrecht E, Smets E. 2002. Aluminum hyperaccumulation in angiosperms: a review of its phylogenetic significance. Bot Rev 68(2):235-269.
Leblanc M, Morales JA, Borrego J, Elbaz-Poulichet F. 2000. 4,500-year-old mining pollution in southwestern Spain: long-term implications for modern mining pollution. Econ Geol 95(3):655-661.
López-González N, Borrego J, Carro B, Lozano-Soria O. 2005. Bioavailability of Fe and heavy metals in sediments from the Ria of Huelva (South-Western Spain). Geogaceta 37:219-222.
Luque C J, Castellanos EM, Castillo JM, González M, González Vilches MC, Figueroa ME. 1998. Distribución de metales pesados en sedimentos de las marismas del Odiel (Huelva, SO. España). Cuaternario y Geomorfología 12(3-4):77-85.
Marques B, Lillebo AI, Pereira E, Duarte AC. 2011. Mercury cycling and sequestration in salt marshes sediments: an ecosystem service provided by Juncus maritimus and Scirpus maritimus. Environ Pollut 159(7):1869-1876.
Manousaki E, Kalogerakis N. 2011. Halophytes-an emerging trend in phytoremediation. Int J Phytorem 13(10):959-969.
Menone ML, Bortolus A, Botto F, Aizpun de Moreno JE, Moreno VJ, Iribarne O, Metcalfe TL, Metcalfe CD. 2000. Organochlorine contaminants in a coastal lagoon in Argentina: analysis of sediment, crabs, and cordgrass from two different habitats. Estuaries 23(4):583-592.
Nieto JM, Sarmiento AM, Olías M, Canovas CR, Riba I, Kalman J, Delvalls A. 2007. Acid mine drainage pollution in the Tinto and Odiel rivers (Iberian Pyrite Belt, SW Spain) and bioavailability of the transported metals to the Huelva Estuary. Environ Int 33(4):445-455.
Pérez M, Usero J, Gracia I, Cabrera F. 1991. Trace metals in sediments from the "ría de Huelva". Toxicol Environ Chem 31(1):275-283.
Ranwell DS, Bird ECF, Hubbard JCR, Stebbings RE. 1964. Spartina salt marshes in southern England. V. Tidal submergence and chlorinity in Poole Harbour. J Ecol 52(3):627-641.

Reboreda R, Caçador I. 2007. Halophyte vegetation influences in salt marsh retention capacity for heavy metals. Environ Pollut 146(1):147-154.
Reboreda R, Caçador I, Pedro S, Almeida PR. 2008. Mobility of metals in salt marsh sediments colonised by Spartina maritima (Tagus estuary, Portugal). Hydrobiología 606(1):129-137.
Robinson B, Schulin R, Nowack B, Roulier S, Menon M, Clothier B, Green S, Mills T. 2006. Phytoremediation for the management of metal flux in contaminated sites. For Snow Landsc Res 80(2):221-234.
Ruiz F. 2001. Trace metals in estuarine sediments from the southwestern Spanish Coast. Mar Pollut Bull 42(6):482-490.
Salgueiro N, Caçador I. 2007. Short-term sedimentation in Tagus Estuary, Portugal: the influence of salt marsh plants. Hydrobiologia 587(1):185-193.
Sánchez-Moyano J E, García-Asencio I, García-Gómez JC. 2010. Spatial and temporal variation of the benthic macrofauna in a grossly polluted estuary from southwestern Spain. Helgol Mar Res 64(3):155-168.
Santos Bermejo JC, Beltrán R, Gómez Ariza JL. 2003. Spatial variations of heavy metals contamination in sediments from Odiel River (southwest Spain). Environ Int 29(1):69-77.
Suntornvongsagul K, Burke DJ, Hamerlynck EP, Hahn D. 2007. Fate and effects of heavy metals in 376
salt marsh sediments. Environ Pollut 149(1):79-91. 377
Tang S-Y. 1993. Experimental study of a constructed wetland for treatment of acidic wastewater from 378
an iron mine in China. Ecol Eng 2(3):253-260. 379
Teuchies J, Beauchard O, Jacobs S, Meire P. 2012. Evolution of sediment metal concentrations in a 380
tidal marsh restoration project. Sci Total Environ 419:187-195. 381
van Geen A, Adkins JF, Boyle EA, Nelson CH, Palanques A. 1997. A 120 yr record of widespread 382
contamination from mining of the Iberian pyrite belt. Geology 25(4):291-294. 383
Vymazal J, Svehla J, Kroepfelova L, Nemcova J, Suchy V. 2010. Heavy metals in sediments from 384
constructed wetlands treating municipal wastewater. Biogeochem 101(1-3):335-356. 385
Weiss J, Hondzo M, Biesboer D, Semmens M. 2006. Laboratory study of heavy metal phytoremedi- 386
ation by three wetland macrophytes. Int J Phytorem 8(3):245-259. 387
Weis J, Weis P. 2004. Metal uptake, transport and release by wetland plants: implications for phy- 388
toremediation and restoration. Environ Int 30(5):685-700. 389
Williams JB. 2002. Phytoremediation in wetland ecosystems: progress, problems, and potential. CRC 390
Cr Rev Plant Sci 21(6):607-635. 391
Williams TP, Bubb JM, Lester JN. 1994a. Metal accumulation within salt marsh environments: a 392
review. Mar Pollut Bull 28(5):277-290. 393
Williams TP, Bubb JM, Lester JN. 1994b. The occurrence and distribution of trace metals in halo- 394
phytes. Chemosphere 28(6):1189-1199. 395
Yadav AK, Abbassi R, Kumar N, Satya S, Sreekrishnan TR, Mishra BK. 2012. The removal of heavy 396
metals in wetland microcosms: effects of bed depth, plant species, and metal mobility. Chem 397Eng J 211-212:501-507.398

[^0]: 2012) (Fig. 2).
